
HotBox
Senior Design Documentation

Spring 2021

Group 14

August 3rd, 2021

Chaitanya Vemuri - Computer Engineering
Haafiz Shafau - Computer Engineering
Austin Tillotson - Computer Engineering
Ahmed Kazzoun- Computer Engineering

Table of Contents
1. Executive Summary 1

2. Project Description 1
2.1 Motivation 2
2.2 Objective 2

2.2.1 List of Objectives and Goals 3
2.3 Function 3
2.4 Requirements Specifications 4

2.4.1 Hardware Requirements Specifications 4
Table 1. Hardware Requirement Specifications 4

2.4.2 Software Requirements Specifications 5
Table 2. Software Requirement Specifications 5

2.5 House of Quality 6
Figure 1. House of Quality 6

2.6 Block Diagram 7
Figure 2. Project Block Diagram 7

3. Research related to Project Definition 8
3.1 Similar Existing Projects 8

3.1.1 HOTLOGIC Food Warming Tote/Lunch Box 8
Figure 3. HOTLOGIC Food Warming Tote/Lunch Box 9

3.1.2 Programmable Temperature Controller + Hotplate 9
Figure 4. Programmable Temperature Controller + Hotplate 9

3.2 Microcontroller 9
Figure 5. Microcontroller Criteria 10
3.2.1 Communication Protocols 10

3.2.1.1 UART 11
Figure 6. Full-duplex UART example 11
Table 3. Characteristics of Data Transmission for UART Protocol 11

3.2.1.2 I2C 12
Figure 7. I2C Operation Diagram 12
Table 4. Characteristics of Data Transmission for I2C Protocol 13
Figure 8. SPI Operation Diagram 14
Table 5. Characteristics of Data Transmission for SPI Protocol 14

3.3 Hardware Research 15
3.3.1 Relevant Hardware Parts 15

3.3.1.1 Cambro GoBox® Half Size Top Loader Insulated Food Pan Carrier 15
Table 6. Cambro GoBox Details 16
3.3.1.1.1 Expanded Polypropylene (EPP) 17

Table 7. Properties of Expanded Polypropylene 18

i

3.3.1.2 End Loading Insulated Food Pan Carrier 19
3.3.1.3 Case Material Comparison 20

Table 8: Case Material Comparison Table 20
3.3.1.4 Barcode Scanner 21

3.3.1.4.1 Pen-type Reader 21
3.3.1.4.2 Laser Scanner 22
3.3.1.4.3 CCD Reader 22
3.3.1.4.4 2D Camera 23
3.3.1.4.5 GM65 barcode scanner 24
3.3.1.4.6 Barcode scanner Comparison Table 24

Table 9: Barcode Scanner Comparison Table 25
3.3.1.5 BoxLock Smart Lock 26

Figure 9: BoxLock Smart Lock 27
3.3.1.6 Electric Heating Technology 27

3.3.1.6.1 Flexible Heaters 27
3.3.1.6.2 Types of Flexible Heaters 28
3.3.1.6.2.1 Polyimide Flexible Heaters 28

Figure 10: Polyimide Heater Example 28
Table 10: Polyimide Heater Specifications 29

3.3.1.6.2.2 Silicone Flexible Heaters 29
Figure 11 :Silicone Flexible Heater Example 29
Table 11: Silicone Heater Specifications 30

3.3.1.6.2.3 Wire Heaters 30
3.3.1.6.2.4 Flexible Heaters Comparison 30

Table 12: Flexible Heaters Comparison 30
3.3.2 Strategic Hardware Components and Part Selections 31

3.3.2.1 Power System 31
3.3.2.1.1 AC to DC Transformer 31

Table 13: AC to DC Transformer Specifications 32
3.3.2.1.2 Buck Converters 32

Figure 12: Buck Converter Circuit Configuration 32
3.3.2.1.3 1D & 2D Barcode Scanner 32
3.3.2.1.4 Pin Description 33

Figure 13. 2D Scanner Breakout Board 33
Table 14. Pin Descriptions of 2D Scanner Breakout Board 33

3.3.2.2 Heating Technology 34
Figure 14. Heating Bed Wiring Diagram. 34
3.3.2.2.1 Creativity 3D Printer Heated Bed 35

Figure 15. Creativity 3D Heated Bed 35
Table 15. Creativity 3D Printer Heated Bed Specifications 36

3.3.2.2.2 SIMAX3D CR10 Aluminum Heated Bed 36

i

Figure 16. SIMAX3D CR10 Aluminum Heated Bed. 36
Table 16. SIMAX3D CR10 Aluminum Heated Bed Specifications 37

3.3.2.2.3 RICHOOSE 3D Printer Silicone Heated Pad 37
Figure 17. RICHOOSE Heating Pad. 37
Table 17. RICHOOSE 3D Printer Silicone Heated Pad Specifications 38

3.3.2.2.4 Heating Technology Comparison 38
Table 18. Heating Technology Comparison Table 38
Figure 18. Heating Pad Connections 39

3.3.2.3 Passive Infrared (PIR) Sensor 40
Figure 19. PIR Sensor v1 40
Figure 20. PIR Sensor v2 41

3.3.2.4 RGB backlight positive LCD 16x2 42
Table 19: RGB backlight positive LCD technical features 42
Figure 21: RGB backlight positive LCD Display 43

3.3.2.5 Adafruit Accessories Lock-style Solenoid 43
Figure 22. Solenoid Lock Internal Schematics 44
Table 20: Adafruit Accessories Lock-style Solenoid Technical Features 44
Figure 23. Adafruit Solenoid Lock 45

3.3.2.6 Arduino ATMEGA2560 45
Figure 24. Arduino Mega2560 46

3.3.2.7 ESP32-DEVKITC-32D 46
Figure 25. ESP32-DEVKITC-32D 46

3.3.2.8 ELEGOO 4 Channel DC 5V Relay Module 47
Figure 26. 4-Channel 5V Relay 47
Table 21: 4-Channel Relay Module Pinout 48
Figure 27: Relay Circuit Diagram 49

3.3.4 Part Selection Summary 49
Table 22: Selected Parts Table 50

3.4 Software Research 51
3.4.1 Relevant Software - Stacks 51

3.4.1.1 LAMP Stack 51
3.3.1.2 MERN Stack 52
3.4.1.3 MEAN Stack 52
3.4.1.4 Stack Comparison 52

Table 23. Stack Comparison Table 53
3.4.2 Programming Languages 53

3.4.2.1 Embedded Languages 54
3.4.2.1.1 C 54
3.4.2.1.2 C++ 54
3.4.2.1.3 Python 54
3.4.2.1.4 Arduino IDE 55

i

3.4.2.1.5 Assembly 55
3.4.2.1.6 Embedded Language Comparison 55

Table 24. Embedded Language Comparison Table 55
3.4.2.2 Website Application Languages 56
3.4.2.2.1 React 57

3.4.2.2.2 Angular 57
3.4.2.2.3 React vs Angular 57

Table 25. React vs Angular Table 57
3.4.2.3 Database Software 58

3.4.2.3.1 MongoDB 58
3.4.2.3.2 Firebase 59
3.4.2.3.3 Amazon Web Services 59

3.4.2.3.4 Database Comparison 59
Table 26. Database Comparison Table 60

3.4.3 Software Selection Summary 60
3.4.3.1 Website Stack 60

Table 27. Website Stack Table 61
3.4.3.1.1 Database 61
3.4.3.1.2 Front-end Framework 62
3.4.3.1.3 Back-end Framework 63
3.4.3.1.4 Web Server/Hosting 64

3.4.3.2 Embedded Software Language 65

4. Related Standards and Realistic Design Constraints 66
4.1 Software Standards 66
4.2 Realistic Design Constraints 67

4.2.1 Economic and Time constraints 67
4.2.2 Environmental, Social, and Political constraints 68
4.2.3 Ethical, Health, and Safety constraints 69

4.2.3.1 Overheating 69
4.2.3.2 Fire 69

4.2.4 Manufacturability and Sustainability constraints 70
4.2.5 Covid 19 constraints 70

5. Project Hardware and Software Design Details 72
5.1 Housing Design 72
5.2 Part Schematics 73

5.2.1 Barcode Scanner 73
Figure 28. MOSFET Logic Level Conversion Circuit 73
Figure 29. Barcode Scanner Schematic 74

5.2.2 4-Channel 5V Relay 74
Figure 30. 4-channel 5V Relay Schematic 74

i

5.2.3 Wireless Communication 75
Figure 31. ESP32 Schematic 75

5.2.4 Open Close Sensor 75
Figure 32. Open Sensor Schematic 76

5.2.5 Temperature Sensor 76
Figure 33. Temperature Sensor Schematic 76
Figure 34. Pull-Up Resistors 77

5.2.6 LCD Display 77
Figure 35. LCD Display Schematic 77

5.2.7 Infrared Sensor 77
Figure 36. Infrared Sensor Schematic 78

5.2.8 External Clock 78
Table 28. XTAL pin Descriptions 78
Figure 37. External Clock Configuration Schematic 78

5.2.9 Reset Button 79
Figure 38. Reset Button Schematic 79

5.3 Overall PCB Design Schematic 79
Figure 39. Overall PCB Design Schematic 80

5.4 Software Design 80
5.4.1 Demo Website 81

5.4.1.1 Backend 81
5.4.1.1.1 Schema Structure 81
5.4.1.1.2 Routing 83

5.4.2 Embedded Implementation 84
5.4.3 Barcode Scanner 85

Figure 40: Barcode Scanner Flowchart 86
5.4.4 Magnetic Reed Switch 87

Figure 41: Magnetic Reed Switch Flowchart 87
5.4.5 File Structure 88

Figure 42: Sample Backend File Structure 88
Figure 43: Sample Frontend File Structure 89

6. Project Prototype Construction and Coding 90
6.1 PCB Vendor and Assembly 90

6.1.1 JLCPCB (JIALICHUANG Printed Circuit Board) 90
Figure 44: JLCPCB Example 91
Table 29: JLCPCB Features 91

6.1.2 Jabil 92
6.1.3 JLCPCB vs. Jabil Comparison Table 93

Table 30: JLCPCB vs. Jabil Comparison 93
6.1.4 PCBWay 93

i

Figure 45: PCBWay Example 94
6.1.5 JLCPCB vs. PCBWay Comparison Table 94

Table 31: JLCPCB vs. Jabil Comparison 95
6.1.5 Conclusion and Final Decision 95

6.2 Final Coding Plan 96
6.2.1 Frontend Plan 96
6.2.2 Backend Plan 97
6.2.3 Embedded Software Plan 99

7. Project Prototype Testing Plan 100
7.1 Hardware Testing 100

7.1.1 Wi-Fi Testing 100
7.1.2 Barcode Scanner Testing 101

Figure 46. TTL/RS232 mode barcode configuration 101
7.1.3 Lock Testing 101

Figure 47. and 48. Lock in unlocked and locked state 102
7.1.4 Temperature Sensor Testing 102

Figure 49. Temperature Sensor Testing Wiring 103
Figure 50. Temperature Sensor Testing Results 103

7.1.5 Heating Pad Testing 103
7.1.6 LCD Display Testing 104

Figure 51. I2C Address for LCD Display 104
Figure 52. LCD Display Wiring and Testing 105

7.3 Software Test Environment 105
7.3.1 Postman 105
7.3.2 SwaggerHub 105
7.3.3 Selenium 106
7.3.4 Testing Tools Comparison 106

Table 32. Testing Tools Comparison Table 106
7.4 Software Specific Testing 107

7.4.1 Frontend Testing 107
7.4.2 Backend Testing 108
7.4.3 Embedded Software Testing 109

7.4.3.1 Temperature Modulation 109
7.4.3.2 Barcode Scanner 109
7.4.3.3 Magnetic Reed Switch 110

8. User Manual 110

9. Administrative Content 112
9.1 Milestone Discussion 112

Table 33. Initial Project Milestones 112
9.2 Budget and Finance Discussion 116

i

Table 34. Budget and Finance 116
9.3 Project Tools 117

Discord 117
GroupMe 117
Google Drive 118
Figma 119
Visual Studio Code 119
GitHub 119
Git 119

9.4 Project Roles 120
Ahmed Kazzoun 120
Austin Tillotson 120
Chaitanya Vemuri 120
Haafiz Shafau 120

Table 35. Project Roles Table 121
9.5 References 121
9.6 Permission Requests 125

i

List of Figures
Figure 1. House of Quality 6
Figure 2. Project Block Diagram 7
Figure 3. HOTLOGIC Food Warming Tote/Lunch Box 9
Figure 4. Programmable Temperature Controller + Hotplate 9
Figure 5. Microcontroller Criteria 10
Figure 6. Full-duplex UART example 11
Figure 7. I2C Operation Diagram 12
Figure 8. SPI Operation Diagram 14
Figure 9. BoxLock Smart Lock 27
Figure 10. Polyimide Heater Example 28
Figure 11. Silicone Flexible Heater Example 29
Figure 12. Buck Converter Circuit Configuration 32
Figure 13. 2D Scanner Breakout Board. Permission requested 33
Figure 14. Heating Bed Wiring Diagram. 34
Figure 15. Creativity 3D Heated Bed. Permission requested 35
Figure 16. SIMAX3D CR10 Aluminum Heated Bed. 36
Figure 17. RICHOOSE Heating Pad. 37
Figure 18. Heating Pad Connections 39
Figure 19. RGB backlight positive LCD Display 41
Figure 20. Solenoid Lock Internal Schematics. 42
Figure 21. Adafruit Solenoid Lock 43
Figure 22. Arduino Mega2560 44
Figure 23. ESP32-DEVKITC-32D 45
Figure 24. 4-Channel 5V Relay 46
Figure 25. Relay Circuit Diagram 47
Figure 26. Barcode Scanner Schematic 72
Figure 27. 4-channel 5V Relay Schematic 72
Figure 28. ESP32 Schematic 73
Figure 29. MOSTFET Logic Level Conversion Schematic 74
Figure 30. Temperature Sensor Schematic 74
Figure 31. Pull-Up Resistors 75
Figure 32. LCD Display Schematic 75
Figure 33. External Clock Configuration Schematic 76
Figure 34. Reset Button Schematic 77
Figure 35. ATMega328 Schematic 78
Figure 36. Overall PCB Design Schematic 78
Figure 37. Status Page 80
Figure 38. Admin Modal Commands 80
Figure 39. Order Page 81
Figure 40. Order Page Confirmation 81

i

Figure 41: Barcode Scanner Flowchart 86
Figure 42: Sample Backend File Structure 87
Figure 43: Sample Frontend File Structure 88
Figure 44: JLCPCB Example 90
Figure 45: PCBWay Example 93
Figure 46. TTL/RS232 mode barcode configuration 100
Figure 47. and 48. Lock in unlocked and locked state 101
Figure 49. Temperature Sensor Testing Wiring 102
Figure 50. Temperature Sensor Testing Results 102
Figure 51. Heating Pad Testing Results 103
Figure 52. I2C Address for LCD Display 104
Figure 53. LCD Display Wiring and Testing 105
Figure 54. Postman Endpoint Testing 107

i

List of Tables
Table 1. Hardware Requirement Specifications 4
Table 2. Software Requirement Specifications 5
Table 3. Characteristics of Data Transmission for UART Protocol 11
Table 4. Characteristics of Data Transmission of I2C Protocol 13
Table 5. Characteristics of Data Transmission for SPI Protocol 14
Table 6. Cambro GoBox Details 16
Table 7. Properties of Expanded Polypropylene 18
Table 8. Case Material Comparison Table 20
Table 9. Barcode Scanner Comparison Table 25
Table 10. Polyimide Heater Specifications 29
Table 11. Silicone Heater Specifications 30
Table 12. Flexible Heaters Comparison 30
Table 13. AC to DC Transformer Specifications 32
Table 14. Pin Descriptions of 2D Scanner Breakout Board 33
Table 15. Creativity 3D Printer Heated Bed Specifications 36
Table 16. SIMAX3D CR10 Aluminum Heated Bed Specifications 37
Table 17. RICHOOSE 3D Printer Silicone Heated Pad Specifications 38
Table 18. Heating Technology Comparison Table 38
Table 19. RGB backlight positive LCD technical features 40
Table 20. Adafruit Accessories Lock-style Solenoid Technical Features 42
Table 21. Four-Channel Relay Module Pinout 46
Table 22. Selected Parts Table 48
Table 23. Stack Comparison Table 51
Table 24. Embedded Language Comparison Table 53
Table 25. React vs Angular Table 55
Table 26. Database Comparison Table 58
Table 27. Website Stack Table 59
Table 28. XTAL pin Descriptions 76
Table 29. JLCPCB Features 90
Table 30. JLCPCB vs. Jabil Comparison 92
Table 31. JLCPCB vs. Jabil Comparison 94
Table 32. Testing Tools Comparison Table 105
Table 33. Initial Project Milestones 112
Table 34. Budget and Finance 117
Table 35. Project Roles Table 123

i

1. Executive Summary
For our senior design project, we developed a smart electric food heater named the
HotBox. In 2020, there were over 60% of U.S. consumers who ordered either take out
or delivery food at least once a week, and due to COVID-19 online ordering was the
only primary source of income for a lot of restaurants as well. Takeout and deliveries
have been on the rise ever since the arrival of the pandemic. Apps and services like
DoorDash and UberEATS are preferred and more sought out rather than going in store
and ordering due to the risk of infection. Restaurants and other food places have begun
their own online ordering system and allow consumers to order from their devices and
pick up or have it delivered to them. With contactless ordering being in demand, the
traffic of a restaurant will be high (independent of the quality of the restaurant) for
picking up the orders in the store. The more orders that restaurant receives, the more
traffic that will occur in the restaurant. And a lot of restaurants limit a certain number of
people in the store to lower the risk of infection as well. Our device’s goal is not only to
keep the food warm, but also to provide restaurants a way to limit consumers inside by
notifying consumers when their food is ready and in the box warming.

The general idea is to have a box that consists of the following functions:
• Ability to warm a reasonable size of food in different materials that contain the food

(i.e., plastic bag, cardboard) and retain the heat as well.
• Ability to display online orders outside the box to identify each order.
• Ability to lock and secure orders inside the box for security.
• Ability to link to restaurant computers for usage of the box.
• Ability to scan in codes to identify orders even further.

2. Project Description
This section of the document contains a description of our project. Included are the
following subsections: motivation, goals and objectives, functions, requirement
specifications, house of quality table, and block diagram. The motivation explains why
we decided to develop this project. The goals and objectives explain what we hoped to
achieve, show, and learn from doing this project. The functions section explains what
the functionality of the project is. The requirement specifications are what our project
achieved in order for us to consider it having accomplished the goal it was designed to
do. The house of quality table shows the correlation between our project’s marketing
and engineering requirements. The block diagram shows an overview of what our
hardware and software do on a base level for the project.

1

2.1 Motivation
For this project we wanted to focus on the main problem with takeout food places which
is receiving your food cold. As a customer that pays for the food, we should at least be
entitled to warm food. Especially with the times we are in now, contactless food pick up
is almost sought after in a lot of stores and restaurants. And it’s not always a guarantee
that you’ll receive your food on time and it’ll be hot and ready to consume. However,
with the HotBox, a smart electric food heater and warmer that sends out notifications to
the customer picking up the order when the food is in the box and keeping warm ready
to be picked up. With this project, not only will the food be warm and ready when you
pick it up, it hopes to reduce a majority of the traffic and congestion in the
restaurant/store itself by letting the customer know when it is ready to be picked up.
Main goal of our project is to heat and warm the food to an appropriate temperature for
the food to taste good. So the box will sense when food enters the box, and will be able
to warm most supported materials and hold temperature for a reasonable amount of
time. It also sends a notification out to the customer’s devices app when the food is
present in the box and heating.

2.2 Objective
The ultimate goal of Senior Design is to create and implement a project idea into a
functioning physical prototype that can be demoed and presented. The Senior Design
lectures help guide us on our path to this destination and the bootcamp gave us a
strong starting point, having us form a foundation to build off of.

There are many smaller goals and objectives that will lead us to the end goal. Senior
Design is an opportunity to display all that has been learned over each of our college
careers; to show that we have acquired all the necessary skills and overall knowledge
needed to become successful engineers in the workplace. As such, one goal for this
semester is to display these abilities and to strengthen them. Senior Design will present
many challenges that we have never encountered before. And with every challenge is
an opportunity to grow. Being that we are taking Senior Design II over the summer
semester, and thus having less time to build the physical project, it will be important to
have well thought out and thorough documentation to make this process as painless as
possible. Success is paramount for these two semesters and that cannot be achieved
alone. While individual contribution will be of the utmost importance, working as a team
will be the only way to succeed. Our objective must consist of strong teamwork and
communication or every goal along the way will be all the more difficult to achieve.

For the documentation, we strive as a group to not procrastinate and be diligent in
making new progress each week. Each time we meet, we will set specific goals that
must be completed prior to the next meeting. Meetings must be effective and efficient, a
time to discuss what must be done, what challenges will come, and how to deal with
them. A plan must always be in place with a shared goal attached. Problems that arise

2

should be discussed and dealt with in a reasonable manner, to ensure a positive
working environment is always present. These are our group objectives.

As for the project itself, we aim to create something that is not only useful but something
that would improve our resumes. We all hope to find a career and make a living with the
last four or so years of hard work. This project is the final step of this journey and the
potentially the last thing we will have to place on our resumes from college.

2.2.1 List of Objectives and Goals
● Display engineering skills learned
● Overcoming challenges presented
● Write thorough documentation
● Teamwork
● Communication
● Avoid procrastination
● Have Effective meetings
● Always have a plan
● Discuss problems encountered
● Keep a positive group environment
● Build useful project
● Build a project that strengthens resume

2.3 Function
Keeping food warm: the main functionality of the HotBox would be to keep takeout
food warm whilst waiting for a delivery driver to come pick it up. This would involve a hot
plate for the restaurant to place the food on top of and a circuit to notify the customer
while the food is being heated. The box will also be insulated and sealed to keep
temperatures from varying. The box will be reasonably sized to fit most reasonable
meals.

Web/App Notifications: Another functionality of the device would be to notify the driver
when the food is being heated. This would ensure the food will still be warm when it
gets to the customer, assuming a normal travel distance, and notifies the restaurant that
the HotBox is empty and can be used for another order. The web app will have a GUI
showing which boxes are empty and send the order number to an empty box for the
employee to put the food in. This would help the driver in finding which HotBox holds
the food that they are delivering.

Weight/Temperature: The circuit should also be able to detect the weight of the food
being placed and the temperature of the plate by itself so it is limited to a certain degree
to avoid burning the food or letting it get cold.

3

2.4 Requirements Specifications
This section contains the hardware and software specifications for the project.

2.4.1 Hardware Requirements Specifications
The following table displays the hardware specifications our project must abide by.

Table 1. Hardware Requirement Specifications

Requirements Specifications

1.1 Accommodatable size Box size should be large enough
to accommodate different fast
foods.
(Minimum size : 10" x 10" x 10”)

1.2 Ability to set temperature and vary
temperature as needed, as well as retain it
for short to long periods o f time.

Heat foods kept in different
materials in a temperature
controlled unit. (“Within a range
of 110°F and 140°F”)

1.3 Support different materials in heated
temperatures

The box should support different
materials such as cardboard
,particulate, and foil inside the
box while idle and heating. It
should be able to withstand the
heating temperatures of the box
at different levels.

1.4 Box Security The box should be secure and
locked if food is present or if
nothing is present in the box to
regulate heating temperatures.
The box can only be unlocked if
it is unlocked remotely through
the restaurant computer or if the
correct order was scanned in
through the Barcode scanner.

1.5 Order Validation The box should be equipped with
a scanner for barcodes for
customers to identify and unlock
the box for their respective order.

1.6 Power System Able to power multiple different
voltages by a single 120V AC
wall line. (“MCU - 5V DC, Lock -
12V DC, Heating Pad 24V DC.”)

4

2.4.2 Software Requirements Specifications
The following table displays the software requirements our project must abide by.

Table 2. Software Requirement Specifications

Requirements Specifications

2.1 The microcontroller will also have to be
able to connect to a web app in order to
send notifications to the customer.

The web app must be able to send
notifications to the client so they
know when their food is being
placed on the plate to be kept
warm and when the delivery driver
picks up their food. Using Android
Push notifications or SMS to send
messages to the customer.

2.2 The LCD on the box should flash the order
number in order to signal to the driver to
which box to pick up.

The order number would be pulled
from the restaurant and flash. The
software team would have to
create the connection from the
order and the box.

2.3 There should be a connection between a
web app and the boxes themselves in
order to tell which one is empty or ready to
be picked up.

A web app would have to be
developed in order to connect to
multiple boxes to send the order
number to the box and reply
saying that it is empty.

2.4 Control temperatures in box The restaurant computer will have
the ability to vary the temperatures
of the box.

2.5 Barcode Scanner After the consumer has scanned
the 2D barcode, the box will direct
the consumer to the box where
their food is located. It will also
prompt the user if the order is
incorrect or not present in the box.

2.6 Box Database The box will have a database for
orders that were placed to keep
track of orders that enter and
leave the box.

5

2.5 House of Quality
The following is a figure of our House of Quality. This figure shows the marketing and
engineering requirements for our project and what correlation each has on each other in
respect to our project, from strong positive correlations to strong negative or no
correlation.

Figure 1. House of Quality

6

2.6 Block Diagram
The following figure is our block diagram for the project. The figure displays the main
operations of the HotBox, color-coordinated by which teams/members worked on it.

Figure 2. Project Block Diagram

7

3. Research related to Project Definition
This section of the document will contain all the research we did for our project. The
subsections for this include similar existing projects, microcontrollers, hardware
research, and software research. The similar existing projects section will contain
projects we found that could be related to ours in some way. These projects will be
useful in understanding the requirements and process we will need in order to develop
our project and ensuring that our project has something unique to offer that you cannot
get from these other projects. The microcontroller section will contain research that was
specifically done on microcontrollers, including microcontrollers that could be used for
what our project will require and which would be best. The hardware research section
will contain all relevant research related to hardware parts that our project will need,
from the material for the casing to the specifics on how to heat the box. The software
research section will contain all relevant research related to the software side of our
project, from which languages would fit best for our project to what Stack would best be
used for our demo application. The hardware and software research sections will also
contain subsections related to part selection, explaining what parts we decided to go
with and why we chose that part of the other options.

3.1 Similar Existing Projects
Heating and keeping food warm is not a new problem and many projects have been
made to try and solve this problem. We plan on analyzing these past designs, figuring
out what went right and wrong, the technologies used, and other implementations to aid
us when building our design. After extensive research on past projects, we were able to
figure out how we want to implement and build our design as well.

3.1.1 HOTLOGIC Food Warming Tote/Lunch Box

The HOTLOGIC Food Warming Tote/Lunch Box is a portable lunch box that plugs into
the wall and heats up the food using a heating plate. It can even cook food if desired as
well which means the box reaches ideal temperatures to keep food warm, even better
hot. The box is also compatible with a variety of materials including glass, plastic, metal,
aluminum, and cardboard.

This design to keep food warm portably was smart however we did not want our
implementation to be portable since the Hotbox will be stationary. The HOTLOGIC lunch
box heating plate is similar to what we wanted to implement however the heating plate
heats and warms to a set temperature that is unable to be changed which is not
practical for our design. The interior of the HOTLOGIC Lunch Box which is lined with
aluminum to retain heat dissipation is something we do want to implement in our design.

8

Figure 3. HOTLOGIC Food Warming Tote/Lunch Box. Permission requested from HOTLOGIC

3.1.2 Programmable Temperature Controller + Hotplate

When we were researching into the heating component of the box, we came across the
Programmable Temperature Controller + Hotplate (PTCH) made by BrittLiv. It
implemented a similar heating pad/plate design that we designed into our box.

Figure 4. Programmable Temperature Controller + Hotplate. Permission requested from BrittLiv

The project was designed to solve heating tasks in a laboratory environment where
exact temperature control is very crucial in chemical processes. It was able to run
temperature ramps and read multiple different temperature programs from a simple SD
card. This project was also low in cost as the overall cost of the controller was $45 and
the hot plate $50. The programmable controller consisted mainly of the electronics
cased in plywood. The hot plate mainly consists of an aluminum plate and cartridge
heaters and a thermocouple used for the heating.

3.2 Microcontroller
The main starting point for the electronics for the box is the microcontroller chip. For our
project, there are certain criteria we need our chip to be able to meet for the box to
function the way we plan. Some of the criteria are listed below.

9

● We need a sufficient amount of I/O pins for other hardware components to be
added

● We need the chip to be cost efficient
● We need the chip to be able to have a wide range of support to work with other

parts
● Programming Language of the chip
● Architecture of the chip
● Speed

Figure 5. Microcontroller Criteria

Since our box will feature different sensors and components that will communicate with
the microcontroller chip, I/O is especially important. We need a chip that has a sufficient
amount of pins for all these features and functions to work. And the way the chip will
communicate to the components is through the different standard communication
protocols available on the chip.

3.2.1 Communication Protocols

Communication protocols are essential to understand when it comes to utilizing the
microcontroller. In this section we will take a look at the three protocols UART, SPI, and
I2C available to us and go over the pros and cons of each one to further understand
each one.

10

3.2.1.1 UART
The Universal Asynchronous Receiver/Transmitter (UART) protocol is an asynchronous
protocol meaning there is no clock necessary when transmitting and receiving data.
Instead, there is a start and stop bit added when transmitting data, so the receiver
knows when to start reading and when to stop reading the data as well. UART can
either be utilized in a full or a half-duplex setting. Below is an example of UART being
done in a full-duplex setting.

Figure 6. Full-duplex UART example

Below is a chart showing some of the main characteristics of data transmission of the
UART protocol.

Table 3. Characteristics of Data Transmission for UART Protocol

Start Bit The bit that starts the transfer of data.
Usually, transmission of data occurs
when the transmitting UART switches
from the high voltage level it was
defaulted at, to a low in one clock cycle.

Data Frame/Size The actual data being transmitted and/or
received.

Parity Bit Optional bit for error checking.

Stop Bit The bit that signals the end of the
transmission, driving the transmission
from a low voltage to a high.

Baud Rate Rate at which information or data is
transferred in a communication channel.

11

Advantages of UART:

● Only need 2 wires for usage. (Transmitter Tx and Receiver Rx wire)
● No clock signal is needed.
● Parity bit present to allow for error checking.
● The way the data packet is structured can be changed to whatever is desired as

long as both ends are set up for it.
● Very popular protocol method and is well documented.

Disadvantages of UART:

● Does not support multiple slave or multiple master systems.
● Data frame size limited to a maximum of 9 bits.
● Baud rates of each UART must be within 10% of each other.
● Slower than the other two protocols (I2C and SPI)

UART is generally the most straightforward protocol out of the other 3 due to no clock
being present. Devices that will be connected using UART include the 2D Barcode
Scanner and the Wi-Fi Module.

3.2.1.2 I2C

The Inter-Integrated Circuit (I2C) protocol is a synchronous communication protocol
meaning all the connected sensors and devices share the same clock signal. I2C
configurations usually consist of multiple devices or sensors connected to a single
master. The master device is the source of all communication as well as the main clock
signal that the rest of the devices will use. Like UART, I2C only requires two wires for
usage.

Figure 7. I2C Operation Diagram

12

Below is a table of the main characteristics of data transmission regarding the I2C
communication protocol.

Table 4. Characteristics of Data Transmission for I2C Protocol

SDA (Serial Data) The line for sending and receiving data.

SCL (Serial Clock) The line that holds the clock signal.

Start Condition The SDA line flips from a high voltage to
a low before the SCL line flips from high
to low.

Stop Condition The SDA line flips from a low voltage to
a high after the SCL line flips from low to
high.

Address Frame 7 or 10 bit sequence that is unique to
each device connected to the master
that identifies when communication
occurs.

Read/Write Bit Bit to specify whether master is sending
or receiving data.

ACK/NACK Bit Acknowledge/No-acknowledge bit.

Advantages of I2C

● Only two wires needed for usage.
● Can have multiple masters and devices connected to the master.
● Bit confirmation for successful transfers (ACK/NACK)
● Less hardware than UARTs

Disadvantages of I2C

● Slower speed when compared to SPI.
● Data frame size limited to 8 bits.
● More hardware when compared to SPI.

I2C is a very convenient protocol because multiple devices can be connected to just
one singular master clock so it saves a lot of time and wiring as well. Devices that will
utilize the I2C protocol will be the LCD Display and the temperature sensor.

13

3.2.1.3 SPI

SPI (Serial Peripheral Interface) is another synchronous communication protocol where
one or more devices are connected to a single master clock. However, unlike I2C that
can be run in either full or half duplex, SPI can only be run in full duplex which means
we need two wires for communication between the master and the other device. This
configuration also doesn't allow multiple master configurations since there is only one
master clock.

Figure 8. SPI Operation Diagram

Below is a table of the main characteristics of data transmission regarding the SPI
communication protocol.

Table 5. Characteristics of Data Transmission for SPI Protocol

MOSI (Master Output/ Slave Input) Line for the master to transmit data to the
other device.

MISO (Master Input/ Slave Output) Line for the device to transmit data to the
master.

SCLK (Clock) Clock signal

SS/CS (Slave Select/ Chip Select) Line for the master to choose which
device to transmit data to.

14

Advantages of SPI

● Since there is no start or stop bits, communication can be done continuously
without interruption.

● No need to address other devices like I2C
● Higher data transfer rate when compared to I2C
● Data can be sent and received at the same time due to separate MISO and

MOSI lines.

Disadvantages of SPI

● Uses four wires compared to only two in SPI and UART.
● No ACK/NACK for successfully received data.
● No error checking
● Only allows a singular master device.

3.3 Hardware Research
This subsection contains all the relevant research that was done for the hardware side
of the project. This research is primarily focused on finding parts that could be used and
implemented in our design to create the HotBox. Their parts are then all compared at
the end of their relevant sections. The section ends with a selection summary of the
parts, explaining what parts we chose for the project and why we chose them over other
options.

3.3.1 Relevant Hardware Parts
In this subsection, we will be discussing some of the hardware components that are
relevant to our product. We will be looking at many components like pre-built containers
that will hold the food when it is warm. We will be also researching the different
materials of those containers. Also, we will research some of the electronic components
that will go in our product like infrared sensors and heating pads.

3.3.1.1 Cambro GoBox® Half Size Top Loader Insulated Food Pan Carrier
When researching a good case to use for our project, we came across this product. In
order to house electronics and keep food warm without any heaters, a case that can
support high temperatures is needed. This case insulates food and eventually, we can
modify the case to house electronics and wires for the heating pad we plan to install.

Made using an innovative EPP material(see section 3.3.1.1.1), this Cambro food carrier
is ideal for new catering companies or delivery services. It is light enough to hold above
your head with one hand.

The Cam GoBox features a professional grade construction made from expanded
polypropylene (EPP), an insulated material with a high level of durability. This high-tech

15

material is extremely lightweight while maintaining optimal impact and chemical
resistance, and it is also eco-friendly.

The insulation quality of this carrier is ideal for transporting your food for extended
periods of time. It will hold cold food below 41 degrees Fahrenheit or hot food above
135 degrees Fahrenheit for up to four hours at a time. The walls have recesses on the
inside so you can get a good hold of your food pans while removing, and the straight
walls allow you to stack food pans with ease.

It is able to fit up to an 8" deep half size food pan and it can withstand heavy-duty use
and abuse without being damaged

This table shows all of the product details of this container such as the weight and the
dimensions of the container. This table is important to show the specifications of the
container to see if it can handle the heat we will make and could store the electronics.

Table 6. Cambro GoBox Details

Weight 1.54 lb

Width 15 2/5 Inches

Height 12 2/5 Inches

Depth 13 Inches

Material EPP Polypropylene (Expanded
Polypropylene Foam)

Capacity 23.6 qt

Color Black

Interior Height 10 Inches

16

Interior Width 13 Inches

Interior Depth 10 4/5 Inches

Application Heavy Duty

NSF Listed Yes

Loading Style Top Load

Hazardous Material No

Power Non-Electric

Product Line Cam GoBox

3.3.1.1.1 Expanded Polypropylene (EPP)
Our project requires a container for the food to be stored in. We needed to find the best
type of container material for the exterior while housing some of the electronics of the
device. In this section we will be discussing the advantages and disadvantages of using
this material.

Expanded Polypropylene (EPP) is a highly versatile closed bead foam that provides a
unique range of properties, including outstanding energy absorption, multiple impact
resistance, thermal insulation, buoyancy, water and chemical resistance, exceptionally
high strength to weight ratio and 100% recyclability. EPP can be made in a wide range
of densities, from 15 to 200 grams per litre, which are transformed by moulding into
densities ranging from 18 to 260 grams per litre. Individual beads are fused into final
product form by the steam chest moulding process resulting in a strong and lightweight
shape.

EPP was first developed in the 1970's as a result of research into new forms of
polypropylene. The material's first applications were for automotive products in Japan in
1982. The demand for EPP has only increased since then. It is needed because the
auto makers try to improve energy management functions whilst reducing weight and
improving environmental benefits. The first application for this material was for an
energy absorbing component in a bumper system of an automobile. EPP is now widely
used for numerous other automotive parts and systems, including seating and other
interior components.

Manufacturing this material is complex however. It requires both technical expertise and
specialised custom equipment. Polypropylene resin is combined with other ingredients
in a multi-step proprietary process. Under tightly controlled conditions, extruded pellets
expand to become consistently shaped beads of expanded polypropylene foam. Other
specialised manufacturing techniques may be employed to produce variations in the
final product form.

17

EPP has been recently approved for use in conjunction with food products. Its thermal
insulation properties and structural strength make it appropriate for containers such as
food delivery containers and beverage coolers and the like. EPP does not support
microbial growth and can be made sterile with steam cleaning.

This table below shows the physical properties and chemical properties of this specific
material. As shown, this material is resistant to many harmful things that could damage
the product if it wasn't made specifically for that. The table is from … that conducted
individual tests to test all of these properties.

Table 7. Properties of Expanded Polypropylene

Physical Properties Resistance to Chemicals

Exposure Media 7 days immersion at 22°C
KEY; 1 = no change 2 = slight swelling

EPP density range, from 20 g/l through 200g/l Petrol / Gasoline 2

Tensile strength (kPa) 270 to 1930 Gas-oil 2

Tensile elongation (%) 21 to 7.5 Kerosene 2

Compressive strength (kPa) Mineral oil 2

25% strain 80 to 2000 Toluene 2

50% strain 150 to 3000 Ethyl alcohol 1

75% strain 350 to 9300 Methyl ethyl ketone 2

Compressive set (%) 10% Sulfuric acid 1

25% strain, 22H, 23°C 13.5 to 10.5 10% Nitric acid 1

Burning rate (mm/min) 100 to 12 10% Hydrochloric acid 1

This figure shows a small piece of the material EPP. As seen, the material looks like a stronger
foam. This “foam” is resitenat to many chemical properties as shown in the table above and will
be a good product for our project.

18

3.3.1.2 End Loading Insulated Food Pan Carrier
Another potential case that the device will be built on is the End Loading Insulated Food
Pan Carrier. This carrier features a strong sealing performance and superior insulation,
it can keep food hot or cold for over 8 hours without any modifications. Two hidden
handles and stackable design facilitates movement, making the food pan carrier take up
less space. The 95-quart capacity allows you to place a large number of hot meals or
cold drinks and other items. It can be used in restaurants, canteens and other places.

This food pan carrier has a seamless double shell and is filled with high-quality
commercial-grade polyurethane materials for achieving optimal insulation. The door is
designed with an inlaid sealing ring so that the sealing performance can reach its
maximum potential. It will maintain the desired temperature for over 8 hours.

Coming in with a net weight of 35 pounds, this 95-quart food pan carrier is equipped
with 12 levels that can hold 6 full-size food pans of hot or cold food, allowing you to
place different sizes of food pans or modify it with heating pads for our project.. It can
store various hot dishes or cold drinks and is suitable for canteens, restaurants, and
other places. The overall dimensions of this box is 27" x 19" x 23.5" (L x W x H) and the
interior dimensions is 21" x 13.5" x 20" (L x W x H).

The manual insulated food pan carrier is equipped with two hidden handles for
convenient movement. The stackable and interlocking design will minimize the needed
space. The maximum angle of opening the door is 270 degrees, so you can easily take
the items out.

19

This insulated pan carrier can keep multiple pans of food at safe temperatures for hours
without electricity and has zero energy consumption. In addition, this feature allows for
energy conservation and environmental protection. Implementing an electrical
component in this device could prove simple to implement.

3.3.1.3 Case Material Comparison
The following table is a comparison of the features and materials of the above cases.

Table 8. Case Material Comparison Table

Features Cambro GoBox® Half Size
Top Loader Insulated Food
Pan Carrier

End Loading Insulated
Food Pan Carrier

>30 qt ✔

EPP material ✔

<30 pounds ✔

Can keep food warm for
over 8 hours

✔ ✔

Has a door that has a
hinge

✔

No electricity involved ✔ ✔

20

3.3.1.4 Barcode Scanner

A barcode is used to encode information in a visual pattern readable by a machine.
Barcodes are used for a variety of reasons including tracking products, prices, and
stock levels for centralized recording in a computer software system.

A barcode scanner usually consists of three different parts including the illumination
system, the sensor, and the decoder. In general, a barcode scanner “scans” the black
and white elements of a barcode by illuminating the code with a red light, which is then
converted into matching text. More specifically, the sensor in the barcode scanner
detects the reflected light from the illumination system (the red light) and generates an
analog signal that is sent to the decoder.

The decoder interprets that signal, validates the barcode using the check digit, and
converts it into text. This converted text is delivered by the scanner to a computer
software system holding a database of the maker, cost, and quantity of all products
sold.

Because barcode scanners are variable and include diverse capabilities, some are
better suited for certain industries due to reading distance and to work volume capacity.
There are multiple types of barcode scanners.

3.3.1.4.1 Pen-type Reader
Pen barcode readers resemble small wand-type sticks that resemble a small pen. The
pen-style barcode reader consists of an LED light and a photodiode in its tip. The user
passes this tip over a barcode and the LED light illuminates the black and white bars.
The photodiode measures the reflection of light and is able to determine the width and
color (white or black) of each bar. This information allows for a digital reading of the
barcode, and information is transmitted to another unit for processing.

21

Pen or wand barcode readers are designed for durable, inexpensive use by a single
user who can quickly scan packages or other items. However, because of the shakiness
and imprecision of human use, the user may need some practice to perfect the scan.

3.3.1.4.2 Laser Scanner
Slightly more advanced than a pen scanner, a laser barcode scanner is capable of more
exact light readings which prevent false positives or scanner errors. In a laser scanner,
a laser beam is shot at a mirror inside the actual unit. This mirror makes a movement so
that the laser sweeps across the barcode in a straight line. This light then reflects back
to a diode, which measures the level of reflection. This reflection is translated into a
digital signal readout of the barcode. Laser scanners can either be mounted in a
scanning unit or be part of a handheld unit.

3.3.1.4.3 CCD Reader
A charge coupled device (CCD), also known as an LED scanner, features hundreds of
tiny LED lights arranged in one long row. These lights are shot directly onto a barcode,
and a sensor then measures not the reflection, but voltage of the ambient light directly
in front of each lightbulb. This voltage measurement provides a digital snapshot of the
barcode. CCD units can be very expensive, but are highly accurate and versatile pieces
of equipment.

22

3.3.1.4.4 2D Camera
Some barcodes do not consist of white and black bars, but white and black spaces in a
two-dimensional (2D) target. These 2D barcodes cannot be read by standard
machinery, but they do allow for versatility of information coding as they can hold and
provide much more data than a standard barcode. To read these barcodes, a 2D
camera image scanner is necessary. This camera consists of hundreds of tiny lights like
the CCD scanner, but these are arranged in multiple rows. The lights flash onto the
barcode and take a digital picture of the barcode, which is then sent to software as a
digital signal. The software then decodes the information.

23

3.3.1.4.5 GM65 barcode scanner
The GM65 barcode scanner identifies a product by its barcode. Then we enter the
quantity of the product on the Nextion touch screen display and send it via WiFi to the
server, where we enter it in the database. This device allows you to automate the
process of inventory of goods.

The secret of the device is a combination of a digital camera and an image processing
module. It has an algorithm that recognizes barcodes and QR codes in the field of view
of the camera, and if it does not have enough external lighting, the built — in LED
backlight comes to the rescue. A light marker in the form of a red stripe is provided for
precise pointing at the scanner's barcode.

We bring the barcode at a distance of about 20 cm to the lens, and a characteristic
buzzer signal is heard, as at a supermarket checkout. To speed up the process, you
need to align the barcode plane perpendicular to the scanner. The maximum deviation
angle is 60 degrees.

The barcode scanner works directly with the computer without any applications: it
pretends to be a typical USB keyboard and outputs the data in the form of a string of
text. This is the default operating mode.

You can configure the scanner using UART commands, but it is much easier to use
service QR codes: switch reading modes, control the LED and buzzer, save and reset
settings by simply targeting the corresponding QR code in the device instructions. This
allows you to change the configuration on the fly.

3.3.1.4.6 Barcode scanner Comparison Table
The following table displays the advantages and disadvantages of each of the barcode
scanners against each other.

24

Table 9. Barcode Scanner Comparison Table

Advantages Disadvantages

Pen-type Reader ● Durable
● Inexpensive

● Not meant for
products

● Meant for smaller
scale use

Laser Scanner ● Fast: Laser scanners
can decode extremely
fast.

● Accurate: Laser
scanners scan most 1D
barcodes with ease.
Just point and scan for
quick results.

● Powerful: Unlike a CCD
scanner, laser scanners
can read large barcodes
and from longer
distances. Some laser
scanners can read
barcodes from over 50
feet away.

● Ambient Light:
Because a laser
scanner functions by
reflecting light back,
high ambient light
may cause difficulties
when trying to scan.

● Laser Limitations:
Most laser barcode
scanners cannot read
barcodes from a
computer or mobile
device display.
Furthermore, if the
barcode is damaged,
faded or too small in
scale, the laser
barcode scanner may
not be able to capture
the scan.

CCD Reader ● Durable: CCD scanners
have no internal moving
parts so they are
typically a bit more
durable than a laser
scanner.

● More economical: CCD
scanners, on average,
are usually less costly
than other barcode
scanners.

● Scan In Direct Sunlight
& On Device Screens:
Due to this scanning
process, CCD scanners
are able to operate in
bright sunlight. Most
CCD scanners are also
able to read scans off a
computer or other
devices' screens.

● Barcode Size
Limitations: CCD
scanners are unable
to read barcodes that
are wider than the
imager line.

● Scan Distance
Limitations: Most
CCD scanners are
only able to read
barcodes from a few
inches away.

25

2D Camera ● Versatility: A 2D
barcode scanner can
scan virtually every
barcode symbology.

● Powerful: 2D scanners,
because of their image
capture processing, can
read barcodes from
nearly every surface
type including computer
or mobile device
screens, and even scan
through glass surfaces.

● Price: 2D barcode
scanners are typically
more expensive than
linear imagers or laser
barcode scanners.

GM65 barcode scanner ● Low power consumption
of the module, operating
current less than
150mA, integrated
design, small size;

● Support TTL232 and
USB interface;

● Supports all common 1D
barcodes and common
2D codes to directly
identify the phone
screen.

● Requires WIFI
connection

3.3.1.5 BoxLock Smart Lock
To have a secure device, we decided to research some smart locks for our product. The
BoxLock Smart Lock is a great way to secure our device by implementing a way to
unlock over WIFI and access barcodes. Here are some of the features that are
included.

BoxLock Home is the first smart padlock designed to protect your deliveries from porch
pirates and package thieves. Through BoxLock’s APIs, operators can designate a lock
to open remotely for a set period of time by pressing the button on the top of the lock.

This lock can communicate over 2.4GHz WiFi and Bluetooth Low Energy. With BoxLock
2M’s “Press to Open” remote operators and network operations centers can open their
BoxLock devices without the need for a barcode, mobile software or a key fob.

The lock measures 6.5 by 2.6 by 2.0 inches (HWD) and sports a hardened steel
shackle, a tamper-resistant zinc interior casing, and a weatherproof fiber-reinforced
outer shell. It has an internal rechargeable battery rated to last up to 30 days between
charges, and comes with a USB charging adapter and cable, and a printed master
barcode that you can use to open the lock if you don't have your phone handy.

26

The bottom part of the lock contains a barcode scanner that's activated by pressing the
black button at the top of the lock. Inside is a Wi-Fi radio (2.4GHz) that connects the
lock to your home network and a Bluetooth radio for close-range communications. The
BoxLock will work with just about any size storage box with a hasp fastener; if you don't
have one there are several links on the BoxLock website for purchasing plastic and
wood boxes of all shapes and sizes.

Setting up the BoxLock is easy. You can download the app and create an account using
your full name, email address, and zip code, and a password. Press Add a BoxLock and
follow the steps to configure the lock. You can then power up the lock to initiate search
mode, select a Wi-Fi SSID from the list. The app asked for permission to pair with my
phone's Bluetooth, asked for permission to send notifications, and setup was finished.

Figure 9. BoxLock Smart Lock

3.3.1.6 Electric Heating Technology
A lot of time and research went into the heating technology of the box. Most present
heaters either use gas or electric and in 2021, electric would be the most practical and
efficient means of energy when it comes to heating. Electric heating is also much better
for the environment as well compared to heaters fueled with gas. Doing research into
electric heaters, we found out that this part of the box would come out to be the most
expensive and hard part of the project. There are a couple of options for heating when it
comes to electric heating and in this section, we will go over the options we researched,
their advantages and disadvantages, and go over the option we chose for our project
and why.

3.3.1.6.1 Flexible Heaters

Flexible Heaters are devices that can generate heat electrically or chemically with
flexible mechanical properties. Due to them being somewhat flexible in nature they can
be bent and contoured (to an extent) and be adhered to different surfaces. This makes it
ideal for curved and linear flat surfaces. They can be made with a variety of things
including Flex PCBs, printed electronics, wires, etc. Each method meet a different
specific set of standards for heating and performance as well as size, shape, and weight
requirements.

27

3.3.1.6.2 Types of Flexible Heaters

There are three main types of flexible heaters on the market: Polyimide, Silicone, and
wired flexible heaters. Main difference between all of these is the material and the
construction of the heater themselves. Each of these types of flexible heaters offer
different benefits to the end user and we will look at each to see the one that aligns
most with our needs.

3.3.1.6.2.1 Polyimide Flexible Heaters

Polyimide flexible heaters are great for heating rigid or curved surface areas. Polyimide
flex heaters consist of an etched circuit between two pieces of polyimide film. They are
relatively slim in form and have great tensile strength and resilience. Meaning that they
are very difficult to tear even with the small form factor of the heaters. Figure X. shows
an example of a polyimide flex heater.

Figure 10. Polyimide Heater Example. Permission requested

Below as well shows some current specifications for polyimide heaters that are
important for us to list off as well.

28

Table 10. Polyimide Heater Specifications

Maximum Watt Density 60 W/in2

Maximum Operating Temperature 400F (200C)

Minimum Operating Temperature -319F (-195C)

Wattage Tolerance +- 10%

Dielectric Strength 1000 VAC

3.3.1.6.2.2 Silicone Flexible Heaters

Silicone flex heaters are great for large, flat surface areas making them great for
industrial use. Their key point is their chemical resistance due to the silicone material
used. The silicone flex heater consists of a circuit that is attached to power leads, then
vulcanized between two layers of silicone rubber. Silicone is both an advantage and a
disadvantage being scratch resistant and repelling most chemicals making it very good
for scientific and industrial usage, however they are also thick and do not always have
the best electrical efficiency. Figure X. below shows an example of a silicone flex heater.

Figure 11. Silicone Flexible Heater Example. Permission requested

Below as well shows some current specifications for silicone heaters that are important
for us to list off as well.

29

Table 11. Silicone Heater Specifications

Maximum Watt Density 60 W/in2

Maximum Operating Temperature 392F (200C)

Minimum Operating Temperature -70F (-56.6C)

Wattage Tolerance +- 10%

Dielectric Strength 1000 VAC

3.3.1.6.2.3 Wire Heaters

Wire Heaters are composed of wires that are usually sewn into textiles or carbon fiber in
some applications. Because of this, they are usually harder, and more difficult to install,
however they are cheap to produce. Products that use wire heaters include heated
blankets, heated gloves, and heated jackets.

3.3.1.6.2.4 Flexible Heaters Comparison

Below is a table showing the characteristics between the three main types of flexible
heaters. The highlighted column/s is the heater that would be most ideal for our project
as well.

Table 12. Flexible Heaters Comparison

Characteristics Polyimide Silicone Rubber Wire

Temp Threshold -320F – 400F -70F – 392F -58F – 203F

Voltage 5V – 115V 12V – 600V 1V – 400V

Attachment Style Adhesive Vulcanization/
Adhesive

Sewn

Ideal in Areas with tight
spaces and harsh
conditions, and do
not require a lot of
flexibility

Areas that require
chemically resistant
solution

Products that need
a low price point
on the market

30

3.3.2 Strategic Hardware Components and Part Selections

In this section of the paper, we talk about all the main parts and components and how
they will work together in the project. The main research for different parts and
components has been done and using that research we will create the PCB and other
schematics. In this section, most of the hardware conflicts and complications will be
worked out and dealt with for a complete and working hardware side for this project.

3.3.2.1 Power System

Due to the nature of the box and the varying different components, the power system for
the components is going to require multiple different voltages. It is very important to talk
about the varying voltages before talking about the rest of the strategic parts and
components. There are a total of 4 different voltages needed in the box for all the
components to fully work. For our heating pad, it requires 24V DC. The lock requires
12V DC. some of the components such as the microcontroller and Wi-Fi module require
5V and 3.3V. We will need to take the raw 120V AC coming from the wall, and convert it
to 24V DC, then to 12V DC, and then from 12V DC to 5V DC and 3.3V DC. To do this
we will be using the following to yield us the correct voltages needed. It is also important
to note that we must also keep in mind of the wattage requirements needed for correct
functionality.

● AC to DC Transformer (120V AC - 24V DC)
● Buck Converters

1. 24V DC to 12V DC
2. 12V DC to 5V DC

● DC to DC Voltage Regulator (3.3V)

3.3.2.1.1 AC to DC Transformer

In order to power the majority of our devices and components, we must take the raw
120V AC voltage coming out of the wall and transform it to something that is actually
usable which begins with the 24V DC output. It is much safer, easier, and efficient to
step down voltages rather than stepping up lower ones to higher voltages. We need to
take the Alternating Current that oscillates and yield a Direct Current which will then be
usable throughout the project. An AC to DC transformer does exactly this by using a
transformer to lower the high AC voltage and then uses a full wave rectifier to yield the
correct current conversion to DC. We will use this 24VDC voltage in the heating plate
bed as well as convert this to be used in other devices and components.

Below is a table of some of the notable specifications of this transformer.

31

Table 13. AC to DC Transformer Specifications

Rated Max Power 350W

Input Voltage 110 ~ 240 VAC

DC Output Voltage 24 VDC

Item Weight 1.6 pounds

Product Dimensions (LxWxH) 8.4 x 4.5 x 1.1 inches

3.3.2.1.2 Buck Converters

To convert the rest of the voltages, we decided to use buck converters. Reason for this
is because it is far more efficient due to the varying currents in the system. Comparing it
to other converters, a voltage divider would be inefficient in our system due to all the
varying currents. A linear regulator would be better than the voltage divider because it
can take varying currents, however a lot of the current dissipates due to heat.

Figure 12. Buck Converter Circuit Configuration

Figure X. shows how the buck converter operates. It uses a switching device (MOSFET
in this figure) that charges the capacitor as well as the inductor for a brief period of time
and the charging current causes the inductor to produce a different voltage while
charging, thus producing the net voltage drop across the load.

3.3.2.1.3 1D & 2D Barcode Scanner

For order verification, the importance of a working barcode scanner is essential. The
DyScan Barcode Scanner scans both 1D and 2D digits which means we will have
flexibility when scanning in customer order numbers. All the orders will be in the
database and when the barcode is scanned and present in the database, the box will be

32

open. To power the barcode module, a supply voltage 3.3V will be necessary. For
communication, either UART or USB which is embedded on the module itself. For our
project, we decided that UART would be the best means of communication for us.

3.3.2.1.4 Pin Description

The Waveshare Barcode scanner is integrated with a built-in breakout board which
makes it simple for us to connect and use the functionalities of the module. Present on
the breakout board is a LED and a buzzer as well as a tactile push down switch which
provides a trigger pin on the board. For our usage, we will use the pin header located on
the board to gain access to the necessary pins for the barcode to function in the box.
The pins include the TTL serial pins, power pins, and trigger pins. Below is Figure 13.
showing the pin layout on the breakout board as well as Table 14. with the descriptions
of the pins that will be used.

Figure 13. 2D Scanner Breakout Board. Permission requested

Table 14. Pin Descriptions of 2D Scanner Breakout Board

Pin# Signal Type Definition

1 VCC p Power Supply, 5V

2 GND p Ground

3 RXD Input TTL-RS232
receive

4 TXD Output TTL-RS232 send

5 TRIG Input Trigger pin

33

3.3.2.2 Heating Technology

For the heating technology, we decided to opt in using a heating plate type of
technology to heat up the box and the food. Rather than purchasing heating cartridges,
which would yield us high temperatures, they would be rather expensive in practical
use. And after researching the price of purchasing a slab of material and countersinking
holes into it, it also was too expensive in practicality. After doing more research, we
found out that a heated bed would work the best for the project. Below in Fig X. is an
example of utilizing a heating bed with a solid-state relay (SSR), a power supply, and a
microcontroller. We will be doing the same concept in our project as well.

Figure 14. Heating Bed Wiring Diagram.

Heated Beds typically are used in 3D printers to heat up the surface the print will rest on
and in doing so ensure the print adheres to the surface as well as keeping the print
warm. That way the print will not come loose due to unavoidable warping forces,
resulting in a nice and even print job. Which means that the heated bed needs to be
able to heat amply across the entire surface for short to long durations of time to ensure
a successful and well-done print. For our project, we need the plate to be able to hit our
target temperatures in a reasonable amount of time as well as hold that temperature for
short to long durations. We also need to make sure that the plate is a material that will
not get affected by different materials at different temperatures in any way. Luckily,
heated beds come in various materials, and the main one we were searching for is
aluminum. A lot of heated beds also come with a thermistor attached to the back of the
heated bed which makes temperature regulation much easier and simpler. Below are

34

some of the options we looked at before making our final decision, as well as depictions
for the three options.

3.3.2.2.1 Creativity 3D Printer Heated Bed

The creativity heated bed features an upgraded full gold processed hot bed plate
compared to the one present in the Ender3 3D printer which is a spray tin plate. This
one is insulated with cotton which improves heat conduction as well as heat-resistance
performance. It features high sensitivity, rapid response, good stability, and high
reliability. It is compatible with various types of 3D printers (Ender 3, Ender 3X, Ender 3
Pro) but for our usage, only the size matters not so much the 3D printer. We plan on
planning the box around the size of the heating plate and this heating plate comes in
two options, 235mm x 235mm (9.25 x 9.25 inches) or 310mm x 310mm (12.20 x 12.20
inches) and is 3mm (.118 inches) thick.

Figure 15. Creativity 3D Heated Bed. Permission requested

The Fig X. above showcases the Creativity Heated Bed. The plate requires a supply
voltage of 24VDC and features open circuit detection to prevent harm to the rest of the
project.

Below are the specifications of the Creativity 3D Printer Heated Bed summarized in
tabular form.

35

Table 15. Creativity 3D Printer Heated Bed Specifications

Specifications

Supply Voltage 24V

Operating Current <14.6Amps

Manufacturer Creativity

Dimensions (LxW) 235mm x 235mm

Thickness 3mm

Maximum Temperature 130C (266F)

3.3.2.2.2 SIMAX3D CR10 Aluminum Heated Bed

The CR10 aluminum heating bed is very similar to the Creativity heating bed with a few
minor differences. The material of the plate is just made up of purely aluminum which is
fine for our usage. Some more notable features include rapid heating up to 100C
(212F), max 130C (266F).

Figure 16. SIMAX3D CR10 Aluminum Heated Bed.

36

In the figure above shown is the SIMAX3D CR10 Aluminum Heated Bed. On top of the
plate lies a protective film to protect the plate from any scratches before usage. The
protective film should be taken off before using the product to prevent any mishaps.

Below are the main specifications of the heating bed.

Table 16. SIMAX3D CR10 Aluminum Heated Bed Specifications

Specifications

Supply Voltage 24V

Work Power 220W

Manufacturer SIMAX3D

Dimensions (LxW) 310mm x 310mm (12.20 x 12.20 inches)

Thickness 3mm

Maximum Temperature 130C (266F)

3.3.2.2.3 RICHOOSE 3D Printer Silicone Heated Pad

The third and final option we decided to look at was the 3D Printer silicone heated pad
manufactured by RICHOOSE. This heating pad is made out of Arlon silicone rubber
substrate so is resistive to other chemicals and moistures that could otherwise affect the
pad. It also allows the pad to distribute heat evenly across the pad as well and provides
excellent heating performances for long durations of time at high temperatures.

Figure 17. RICHOOSE Heating Pad.

37

The figure above showcases the RICHOOSE Heating Pad. The pad can adhere to
multiple surfaces using the 3M adhesive, but aluminum is the surface recommended for
the best heating results. The dimensions of the pad are the same of the other two
heating pads, 310mm x 310mm (12.20 x 12.20 inches). The thickness of the pad is
about 1.5mm however it relies more on the surface it is adhering to. Below shows a
table rounding up the rest of the specifications of the pad.

Table 17. RICHOOSE 3D Printer Silicone Heated Pad Specifications

Specifications

Supply Voltage 120V

Work Power 750W

Manufacturer RICHOOSE

Dimensions (LxW) 310mm x 310mm (12.20 x 12.20 inches)

Thickness 1.5mm (.059 inches)

Working Temperature -62C – 235C (-79.6 – 455F)

Mounting process Adhesive + Screws

3.3.2.2.4 Heating Technology Comparison

In this section we take a side by side look of all the heating technologies researched
and come to a decision about which choice we decided to go with. All the important
specifications to us are listed in a tabular for easy comparison to each other and the
highlighted column is the one we decided to go with. The specifications are important to
note as it will determine which ones best suit our final end product.

Table 18. Heating Technology Comparison Table

Specifications Creativity 3D
Printer Heated Bed

SIMAX3D CR10
Aluminum Heated
Bed

RICHOOSE 3D
Printer Silicone
Heated Pad

Supply Voltage 24V 24V 120V

Max Operating
Current

<14.6 Amps <9.16 amps <6.25 amps

Thermistor
Included?

Yes Yes Yes

Dimensions 310mm x 310mm 310mm x 310mm 310mm x 310mm

38

Thickness 3mm 3mm 1.5mm

Mounting Type Screws Screws Adhesive + Screws

Working
Temperature

130C (266F) 130C (266F) -62C – 235C (-79.6
– 455F)

Price $20.99 $39.99 $36.99

The main reason we chose the Creativity 3D Printer Heated Bed was due to a couple
reasons. One was the fact that we did need a super powerful heater for our use, so the
RICHOOSE was out of the question despite it being able to reach extreme
temperatures. The fact that the RICHOOSE also needed 120V to be supplied to it would
have been overkill again for our project. The reason the Creativity was chosen over the
SIMAX3D option was because of the price as well as the added insulated cotton for
improved heat conduction and heat resistance as well.

Figure 18. Heating Pad Connections

The figure above shows the connections that will be used on the heating pad. The
heating pad will be connected using a 5V relay so that the microcontroller will be able to
control the heating of the pad, the NTC thermistor will be connected to the
microcontroller itself in order to track and monitor the temperature of the heating pad as
well. Due to the pad requiring a supply voltage of 24V, we must find an appropriate
power source in order to power on the heating pad.

39

3.3.2.4 RGB backlight positive LCD 20x4

This LCD display has many features. Instead of just having blue and white, or red and
black, this LCD has black characters on a full color RGB-backlight background. That
means you can change the background color to anything you want - red, green, blue,
pink, white, purple yellow, teal, salmon, chartreuse, or just leave it off for a neutral
background. This LCD is the most daylight readable character LCD we have and is very
beautiful and easy to read no matter what color/brightness you have for the backlight.

This table below shows some of the specifications of the RGB backlight positive LCD
16x2. The table shows some essential information like the dimensions of the actual LCD
and the amount of pins and ports. It also shows the languages you can program in and
the electronic details like the voltage and current required.

Table 19. RGB backlight positive LCD technical features

Dimensions 38mm x 84mm / 2.3" x 3.9"

Design Black text on multi-color background

Connection port Connection port is 0.1" pitch, single row
for easy breadboarding and wiring

Display Length 20 characters wide, 4 rows

RGB LED Single RGB LED backlight included can
be dimmed easily with a resistor or PWM
and uses much less power than LCD with
EL (electroluminescent) backlights

Electronic details Each R, G, & B LED has a 200 ohm
resistor in series so you can power the
backlight from 3V or 5VDC. R forward
voltage is ~2.2V, G & B are ~3.4V

Languages Built in character set supports
English/Japanese text

Pins Can be fully controlled with only 6 digital
lines. (Any analog/digital pins can be
used) and 3 PWM pins for the backlight

40

Extra Features Up to 8 extra characters can be created
for custom glyphs or 'foreign' language
support. Comes with 10K necessary
contrast potentiometer and strip of header

This RGB backlight positive LCD will be used in our project to display to the user
whether or not their food is heated and ready to be picked up. This will be powered up
and controlled by our arduino and PCB. When not being used, it will be turned off to
save the LCDs

Figure 19. RGB backlight positive LCD Display

3.3.2.5 Adafruit Accessories Lock-style Solenoid

To have increased security on our device, we decided to use this particular lock. This
lock is a solenoid lock that can be programmed by a MCU. This lock is small enough for
a cabinet or lock.

Solenoids are basically electromagnets: they are made of a big coil of copper wire with
an armature (a slug of metal) in the middle. When the coil is energized, the slug is
pulled into the center of the coil. This makes the solenoid able to pull from one end.

41

This solenoid in particular is nice and strong, and has a slug with a slanted cut and a
good mounting bracket. It's basically an electronic lock, designed for a basic cabinet or
safe or door. Normally the lock is active so you can't open the door because the
solenoid slug is in the way. It does not use any power in this state. When 9-12VDC is
applied, the slug pulls in so it doesn't stick out anymore and the door can be opened.

The solenoids come with the slanted slug as shown above, but you can open it with the
two Phillips-head screws and turn it around so it's rotated 90, 180 or 270 degrees so
that it matches the door you want to use it with.

To drive a solenoid you will need a power transistor and a diode. You will need a good
power supply to drive a solenoid, as a lot of current will rush into the solenoid to charge
up the electro-magnet, about 500mA, you cannot power it with a 9V battery.

This figure is from the official website of the Adafruit Accessories Lock-style Solenoid. It
shows the electronic schematics of the actual lock itself. In this figure, you can see
where the arduino gets connected from and the MCU controlling it.

Figure 20. Solenoid Lock Internal Schematics

This table shows some of the actual technical features of the Adafruit Accessories
Lock-style Solenoid. It is very important to have this because it shows the critical things
like power required and how to use it properly. It also shows dimensions to make sure it
can fit our product.

Table 20. Adafruit Accessories Lock-style Solenoid Technical Features

Power needed Power required: 12VDC (you can use
9-12 DC volts, but lower voltage results in
weaker/slower operation). Draws 650mA
at 12V, 500 mA at 9V when activated

42

Usage Designed for 1-10 seconds long activation
time

Dimensions 0.92" x 2.65" x 1.08"

Max Dimensions (when opened) 1.64" x 2.1" x 1.08"

Wire Length 8.75”

Weight 147.71g

Extra Features Slanted-cut Slug can be reversed to
match application. Designed for a basic
cabinet, safe, or door. Good strong
mounting bracket

This figure shows how the lock is going to look. It is a really simple design. The solenoid
lock is only accompanied by the connection wires which will be used to connect to the
arduino. This lock will be in the front of our product and will wire to the electronics bay of
our product.

Figure 21. Adafruit Solenoid Lock

43

3.3.2.6 Arduino ATMEGA2560
For our product, we decided to use an Arduino MEGA2560. The Arduino MEGA 2560 is
designed for projects that require more I/O lines, more sketch memory and more RAM.
When programmed, it is recommended for 3D printers and robotics projects.

The Arduino Mega 2560 is a microcontroller board based on the ATmega2560. It has 54
digital input/output pins (of which 15 can be used as PWM outputs), 16 analog inputs, 4
UARTs (hardware serial ports), a 16 MHz crystal oscillator, a USB connection, a power
jack, an ICSP header, and a reset button. It contains everything needed to support the
microcontroller; simply connect it to a computer with a USB cable or power it with a
AC-to-DC adapter or battery to get started.

The Arduino Mega 2560 is programmed using the Arduino Software (IDE), an
Integrated Development Environment common to all the boards and running both online
and offline.

Figure 22. Arduino Mega2560

3.3.2.7 ESP32-DEVKITC-32D
The ESP32-DEVKITC-32D is a WIFI card that will be used for our project. The purpose
of a WIFI card is to communicate with the restaurant's web application to send
notifications to the users to notify them when the food is ready to be heated. This is a
brief description of the particular model we chose.

44

Figure 23. ESP32-DEVKITC-32D

The ESP32 is a single 2.4 GHz WiFi and Bluetooth module that integrates the TSMC
ultra-low power technology. It’s designed for performance, versatility, and reliability in a
wide array of applications. There is a IEEE 802.11 standard security features all
supported, including WFA, WPA/WPA2 and WAPI

The ESP32 Development Board is made with the official WROOM32 module. There is a
built in USB-to-Serial converter, automatic bootloader reset, Lithium Ion/Polymer
charger. And just about all of the GPIOs brought out so we can use it with any sensor.
That module contains a dual-core ESP32 chip, 4 MB of SPI Flash, tuned antenna. And
all the passives we need to take advantage of this powerful new processor. The ESP32
has both Wi-Fi and Bluetooth Classic/LE support.

3.3.2.8 ELEGOO 4 Channel DC 5V Relay Module
A 4 Channel Relay Breakout is an easy way to use our Arduino to switch high voltages
and high current loads. The board is 5V logic compatible and uses 4 digital outputs to
control 4 individual relays. Each relay has the common, normally open, and normally
closed pin broken out to a convenient 5.0mm pitch screw terminal. The contacts on
each relay are specified for 250VAC and 30VDC and 10A in each case, as marked on
the body of the relays.

45

Figure 24. 4-Channel 5V Relay

This is a 4-channel relay interface board, which can be controlled directly by a wide
range of microcontrollers such as Arduino, AVR, PIC, ARM, PLC, etc. It is also able to
control various appliances and other equipment with large current. This is widely used
for all MCU control, industrial sector, PLC control, smart home control.

The following is the pinout table for the 4 Channel Relay Module.

Table 21. 4-Channel Relay Module Pinout

Pin Number Pin Name Description

1 GND Ground reference for the module

2 IN1 Input to activate relay 1

3 IN2 Input to activate relay 2

4 IN3 Input to activate relay 3

5 IN4 Input to activate relay 4

6 Vcc Power supply for the relay module

7 Vcc Power supply selection jumper

8 JD-Vcc Alternate power pin for the relay module

From the picture below, when the signal port is at low level, the signal light will light up
and the optocoupler 817c (it transforms electrical signals by light and can isolate input
and output electrical signals) will conduct, and then the transistor will conduct, the relay

46

coil will be electrified, and the normally open contact of the relay will be closed. When
the signal port is at high level, the normally closed contact of the relay will be closed.

Figure 25. Relay Circuit Diagram

3.3.4 Part Selection Summary

Below are the specific parts we have chosen to create our product as discussed in
section 3.3.3 and 3.3.4. These parts were specifically chosen because they are
compatible with each other and work well. Each part connects to the MCU that we
chose and is powered and controlled by that.

47

Table 22. Selected Parts Table

Item Part # Manufacturer Cost (USD)

LOCK a19042500ux0028 uxcell $11.49

RELAY EL-SM-006 ELEGOO Store $7.99

LCD DISPLAY I2C LCD1602 SunFounder Store $8.99

ESP32 3-01-1287 HiLetgo $10.99

12V DC ADAPTER B015OCV5XO Ksmile $4.50

DIGITAL
MULTIMETER

Vpro850L AIRMARK $11.88

MEGA 2560 LYSB01H4ZDYCE-
ELECTRNCS

ELEGOO Store $15.99

HEATING BED B087C22PHM Creativity $18.99

AC/DC
TRANSFORMER

LRS350W-24 NiuGuy $36.90

TEMP SENSOR N/A *From local so no
manufacturer*

$4.96

BARCODE
SCANNER

DE2120 Sparkfun $44.95

LINING SmartSHIELD
-3mm

Insulation
MarketPlace LLC

$14.95

48

3.4 Software Research
This section includes all the research that was done for the software aspects of the
project. This includes relevant software such as stacks to the various programming
languages available to use for the given tasks to be done.

3.4.1 Relevant Software - Stacks
This section of the document will cover some stacks commonly used in web
development, which will be important to know for the development of the demo web
application used for testing the HotBox project. The stacks that will be covered are the
LAMP and MERN stacks. Each section of the specific stack will cover what the stack is,
a small description of each of its components, and the benefits of using the stack for a
web application. The components of these stacks may be covered more in detail later
when more research is done for exactly which components will be used in the final
decision.

3.4.1.1 LAMP Stack
LAMP stack is one of the many stack options available to use for web applications. The
LAMP stack has been around since the beginning of web development, being one of the
first stacks as well as being open source. Being it is still often used today, the LAMP
stack is a time-tested stack that has continued to be relevant through the years.

LAMP stands for Linux, Apache, MySQL, and PHP. These are the components that are
used to build the LAMP stack. Linux is the stack’s operating system, a well known open
source operating system that is often used for its flexibility and configuration options.
Apache is the stack’s web server. Apache has been the most used web server on the
public internet for many years. The server “processes requests and serves up web
assets via HTTP”, making it accessible via a URL for anyone that is in the public
domain. MySQL is the database of the stack (IBM Cloud Education, 2019). This
database is open source and stores information queried from the SQL language. PHP is
the backend programming language for the stack that is also open source. With the help
of Apache, PHP code can result in dynamic web pages for the application.

This stack has a strong appeal for its simplicity. Compared to other stacks, LAMP does
not take much work to produce a working website. Along with it being time-tested, the
stack is proven to be a stable option for web development. Due to the open source
nature of the LAMP stack, it is quite flexible, allowing the choice of the components that
best fit the needs of the application. LAMP is efficient to use, due to how long it has
been around. The stack can be built off what others have done and customize parts
already available, allowing development to take less time than working from scratch.
Another appeal of the LAMP stack is that we are familiar with it, having used it in a
previous class to create a small web application project.

49

3.3.1.2 MERN Stack
MERN stack is a variation of the MEAN stack. MERN stands for MongoDB, Express,
React, and Node. MongoDB is a nonSQL database and is the database for the stack,
designed to be easy to work with. As the official MongoDB website states about the
MERN stack, the database “was designed to store JSON data natively” (MongoDB).
The MERN stack’s query language is built off JSON and JavaScript, making MongoDB
work well with the components of this stack. Express is the web server framework for
the stack and a package for Node. React is a JavaScript framework and the client-side
framework for the stack. Node is the web server of the stack. The MERN stack works
using a 3-tier architecture using only JavaScript and JSON, having all of its components
work together for a fast and responsive web or mobile application.

MERN stack has many advantages to make it appealing for use. MERN is composed
entirely of JavaScript and JSON, making the learning curve of this stack much lower
compared to some other stacks that use multiple languages. Due to Node, MERN stack
applications can be run locally, making development and testing very efficient. React
allows the frontend portion of the application to run on a remote server, making it quick
and reactive, not needing to wait for a response from the main server to update. The
MERN components, especially MongoDB and Node, work well together, all resulting in
an application that is fast for the user and quicker to develop in general. MERN is a
common stack choice for web developers today, making it a great tool to learn. Along
with some of us also having experience with this stack from a previous class to create a
larger web application project, the MERN stack has many benefits going for it.

3.4.1.3 MEAN Stack
MEAN Stack is an alternative version of the MERN stack. The only difference between
the two is the choice of client-side framework present. The MEAN stack uses Angular
instead of React. Angular has been a very popular framework for quite a while, along
with MEAN being one of the most popular stacks.

The main appeal for this stack is its past popularity. Similarly to React, Angular is a
commonly used framework and one worth learning for web development. Unlike the
previous stacks, however, members do not have experience with Angular.

3.4.1.4 Stack Comparison
Below is a table comparing the aforementioned stacks, what components the stack
consists of and the benefits each stack offers.

50

Table 23. Stack Comparison Table

Stack Components Benefits

LAMP Linux, Apache, MySQL, PHP - Time-tested
- Open-source components
- Uses most common web server
- Flexible
- Previous experience

MERN MongoDB, Express, React, Node - Modern
- Single language design
- Local server development
- Resume building skills
- Previous experience

MEAN MongoDB, Express, Angular, Node - Modern
- Single language design
- Local server development
- Resume building skills
- Most commonly used stack

Both LAMP and MERN share the benefit of members having previous experience with
them. LAMP has the benefits of its flexibility of each component being open source.
LAMP is more time-tested than MERN and MEAN, which have only been around in
recent years in comparison. LAMP uses Apache, the most common web server, making
it very accessible to everyone. MERN and MEAN are more modern with components
that have all been developed more recently and work extremely well together. MERN
and MEAN have the benefit of local server development, something LAMP lacks. MERN
and MEAN are a single language designed stack, using JavaScript, the most commonly
used language for web development. This makes MERN and MEAN have a lower
learning curve while also leaving the developer to learn JavaScript, a skill any web
developer would need on their resume. MEAN has been the most used web
development stack in recent years, however, recent studies have shown a larger
interest in React over Angular, making MERN appear to be the future. The interest
between the two is not too major, however, so both are solid options for both the project
and for building a resume.

3.4.2 Programming Languages
This section contains the languages that were researched for the project. These
programming languages are the options we have to create the software design for the
embedded software and demo application. Each subsection gives a small history of the
language, why it is used, and the positives and negatives for each of them.

51

3.4.2.1 Embedded Languages
This section contains the programming languages that were researched and considered
for the embedded software. This portion of the document contains a section at the end
which compares all the following languages and a table containing this information.

3.4.2.1.1 C
C is a computer programming language that is used in a wide variety of software, from
simple applications to embedded system programming. C was devised out of Bell Labs
by Dennis Ritchie and the early 1970s as a language for the Unix operating system in
order to implement utilities. C was directly an improvement of the B language, which
was slow in nature, but has become a staple language since.

C is a powerful language and generally one of the first taught languages as it provides a
strong background for programming. This is due to the fact that most data structures,
functions, etc are created from scratch, forcing the programmer to learn as they code. C
is a language we are all familiar with, having used it at least once in a coding class
during our major. While it is often one of the most difficult languages in comparison to
others, the familiarity of the language is one of its strongest appeals. C was also used in
our embedded classes, making it a prime choice for the embedded programming of this
project.

3.4.2.1.2 C++
C++ is a superset of the C language, meant to bring object oriented programming into
the language, a style normal C is unable to do, resulting in the original name of C with
Classes. In History of C++ found on cplusplus.com, it states that the history of C++ goes
back to 1979, created by Bjarne Stroustrup during his work on his Ph.D. thesis. C++
was officially published and became commercial in 1985 (Albatross).

C++ is a commonly used language for embedded programming. Along with the
additions it contains compared to C, C++ is a strong alternate option to choose for our
embedded language of choice for the project. However, due to the popularity of C in our
courses, experience with C++ is not as strong.

3.4.2.1.3 Python
Python is a commonly used, object-oriented language created by Guido van Rossum,
initially released in 1991. Python Institute states that Guido van Rossum’s goals for
Python were to be an open source language that would be easy and intuitive while
being just as powerful as other languages. He wanted the code to be as understandable
as that of plain English and suitable for everyday tasks (Python Institute). These goals
were accomplished, resulting in Python to often be the go to language in many
industries and a go to language for embedded programming.

Python is a simple and easy to understand language, used universally in the
programming world. This makes it a must learn language for any programmer.
Unfortunately, Python is not the language of choice for our courses and our experience

52

with it is minor at best. Yet it is a skill that should and must be learned, making it not
only a great option for embedded programming but also a great opportunity to learn a
valuable skill.

3.4.2.1.4 Arduino IDE
Arduino Integrated Development Environment (IDE) is a language composed of
functions from C and C++. While Arduino is composed of C and C++, it is not those
languages. Arduino has limitations compared to C and C++. One major limitation is that
the majority of the standards libraries for C and C++ do not work in Arduino. Another
limitation is that all files related to the code must be in the same folder. These limitations
result in Arduino not being as powerful or as flexible as C and C++. However, it comes
with the benefit of being designed specifically for the Arduino boards. The Arduino IDE
simplifies the process of coding the board, making it great for beginners and results in it
having a lower learning curve. For complicated embedded programs, Arduino IDE’s
limitations might make it difficult to code, but for simpler programs, Arduino IDE will be
perfect. This language will be mainly considered if an Adruino board is chosen for the
project.

3.4.2.1.5 Assembly
Assembly language is the root of all programming. Going back to the 1940s, assembly
was used on the first modern computers by programmers. Due to the limits of the first
computers, this was the only option at the time. Assembly is a difficult language,
requiring much effort to produce the same results of even the simplest logic in modern
languages. Assembly instead has become a background, the language that compilers
of various languages compile to. While assembly is occasionally still used, modern
compilers can create assembly code far more efficiently than most programmers,
making assembly best left to the compilers.

Assembly might be the final language given to hardware to run, it is a very difficult
language to work with. However, some courses did force us to write in assembly to
make simple code, leaving us with experience of it. However, it would be a poor option
to use, even for the simplest of tasks, making it not an ideal choice for our project.

3.4.2.1.6 Embedded Language Comparison
The following table is a comparison of the embedded language options. The following
pros and cons were gathered from above research, common or person knowledge, the
sections from Data Flair on each language:

Table 24. Embedded Language Comparison Table

Language Pros Cons

C - Powerful and efficient
- Lot of experience
- Commonly used
- Portable

- Lacks OOP
- Difficult to debug
- Use of pointers

53

C++ - Portable
- Object-oriented
- Commonly used
- C compatible

- Lacks Garbage Collector
- Use of pointers

Python - Extensive Libraries
- Simple
- Object-oriented
- Open-source
- Portable

- Speed limitations
- Lack of previous experience

Arduino IDE - Designed for Arduino boards
- Simpler than C/C++

- Lacks standard libraries

Assembly - Some experience - Difficult to work with
- Complex to code simple logic
- Outdated for programmers

From the above table and research, it is clear assembly as the main programming
language is a last resort and should only be used if necessary, and as such, will not be
a choice. Python offers many benefits. Not only is it one of, if not the, most popular
languages today and a strong language to learn for the industry, it is also much more
simple than that of C and C++, having a learning curve that could likely be
accomplished in the time frame. C and C++ are very similar in nature. C++ mainly has
the advantage over C in having more options to it, specifically containing the ability to
use object-oriented programming. However, for the embedded programming that this
project will require, this extra functionality will likely not be needed. C has the major
benefit of our members having the most experience with it on both the hardware and
software ends. While it might be more difficult to use, familiarity between the members
could avoid a lot of headache during the process of building the project. The Arduino
IDE is important to consider due to its specific use for Arudino boards. Arduino boards
are very well known and commonly used, making it a likely choice to use as the
microcontroller. If this ends up being the case, Arduino IDE should be considered as it
was designed specifically for what the embedded language needs to fulfil.

3.4.2.2 Website Application Languages
Many languages are available to use for web development. The most common four are
JavaScript, Python, Java, and C++. Unlike the above section, it is predetermined that
JavaScript will be used for the web application for the project. This is due to the amount
of experience we have with this language. We all have had a class that specifically used
JavaScript based stacks to produce websites. Due to the limited time available to create
both the project and the web application and the fact JavaScript is the leading language
for web development, using it provides both saved time from learning new languages
and valuable experience in an already commonly used language. The decision comes
down to what JavaScript based languages are available to choose from.

54

3.4.2.2.1 React
React is an open-source, frontend, JavaScript library and part of the aforementioned
MERN stack. React was developed and is maintained by Facebook and a community of
independent programmers. It was released in 2013. React is used for single-page web
applications or mobile applications. React is made up of small segments of code called
components, which are used together to create complex and reactive applications. The
use of components allow for creating the complex applications with manageable code
due to the smaller sizes of implemented components. React uses DOM to render out
the html of the code to be viewed by the user. React uses html style code with the use
of JSX and JavaScript, allowing programmers that know the languages to have a much
easier time working with the library.

React is a very common library used for front-end web and mobile development. Our
group has experience with React from a previous class that was used specifically to
make a web application, making it an ideal choice for our web application.

3.4.2.2.2 Angular
Angular is an open-source web application framework using TypeScript, a superset of
JavaScript and is part of the aforementioned MEAN stack. Angular was developed by a
team at Google and initially released in 2016. Angular.io states that Angular uses a root
component to connect to a hierarchy of components with DOM. Each component is a
class with logic and data and associates with an HTML template to display. These
components have a decorator that adds metadata, which can be modified with the
assistance of directives and binding markups (Angular).

Angular is a relatively new and sophisticated framework with many options available to
the programmer. We do not have experience with this framework, however, it is a
relevant framework in web development and thus is a powerful framework to learn.

3.4.2.2.3 React vs Angular

Table 25. React vs Angular Table

Name Pros Cons

React - Previous experience
- JavaScript based
- Fast
- Strong community

- Uses JSX
- Constantly changing

Angular - Larger functionality
- Strong community

- Uses TypeScript
- No previous experience
- Steep learning curve
- Performance hit on complex apps

55

React and Angular are two of the most commonly used frameworks for today’s web
development. Angular has many more options to it, but with the options comes more
complexity and a steeper learning curve. Many of the extra options it contains are
mandatory to use, forcing the programmer to learn them all. In comparison, React is
much simpler, primarily using JavaScript and an html style code. JSX needs to be
known and used by the programmer, but this does not vary far from normal html code,
making it much easier to grasp. React applications are fast and reactive, leaving the
user with a great experience. While we have previous experiences using React for web
development, we do not have experience with Angular, meaning we would have to
attempt to learn a framework with a steeper learning curve, taking up valuable time that
could be allocated elsewhere.

3.4.2.3 Database Software
This section will contain the options we have to use as the database for our web
application. The three main options are MongoDB, Firebase, and Amazon Web
Services(AWS). The main requirements of the final selection of a database include
being able to connect using NodeJS, simple to use, and having a decent amount of
storage in the free tier of the database. The main usage of the database in the web app
would be to store information on each of the HotBoxes such as if the box is open or not,
the order number of the order that is being put in the box, and many other pieces of
information. The following few sections will elaborate on the various pros and cons of
each database software.

3.4.2.3.1 MongoDB
MongoDB is a global cloud database service for modern applications. It provides
automated deployment, the ability to make post-deployment modifications to the
database, and the ability to make clusters in order to test new ideas. It is also a
post-relational database with JSON-like document data models and schemas,
specifically made with horizontal scalability in mind. It is very easy to make changes on
the fly to the database if necessary. MongoDB is most known for high performance and
best-in-class security. Furthermore, MongoDB can be operated in the cloud, using
MongoDB Atlas, or on-premise. The Atlas M0(free tier), which is what we would be
using if we selected MongoDB as our database, has a storage limit of 512 MB and uses
shared RAM along with a shared vCPU. The free tier provides more than enough for the
scope of this web application. MongoDB uses its own query language, MQL, which was
designed from the ground up for doing advanced queries and updates on the JSON-like
document structures that are stored in each cluster. It uses the same JSON syntax as
MongoDB documents, so it is very easy to assemble complex queries by hand or
programmatically. MongoDB also supports ACID transactions and schema validations,
so it is also very similar to its relational database predecessors. The limitations of
MongoDB include high memory usage, in that it stores key names for each value pair,
limited data size, in that the size of a document must not exceed 16 MB, and the lack of
functionality of joins resulting in data redundancy.

56

3.4.2.3.2 Firebase
Firebase Realtime Database is a NoSQL, cloud-hosted database with data being
synced across all clients in real time. Data is stored in the structure of JSON in the
database as well. While Firebase is a database, it is also an application development
platform. Firebase is explicitly designed for mobile application development, so its entire
user interface and onboarding flows are built around that use case, including hosting,
authentication, data-driven triggers, and analytics. As a result, it has more features that
are purely for mobile app database management. The free tier that Firebase
provides(Spark Plan) offers 1 GB of stored data, 50000 document reads, 20000
document writes, 20000 document deletes, all of which apart from the storage acts as a
daily quota. It also provides a network egress of 10 GiB(Gibibyte) per month. This is
more than enough for the current scope of this project. Should the project scale further
later on, Firebase offers higher tiers that could potentially suit future needs.

3.4.2.3.3 Amazon Web Services
Amazon Web Services(AWS) is a cloud platform that provides a multitude of
functionalities ranging from infrastructure technologies, such as compute, storage, and
databases, to emerging technologies such as machine learning and artificial
intelligence. As mentioned earlier, the main focus of AWS for our project would be to
use it for its database services. AWS DynamoDB is the free tier of their database
service. It is a database system that supports data structures and key-valued cloud
services, allowing users the benefit of auto-scaling, in-memory caching, and backup and
restore options for internet-scale applications. The advantages of DynamoDB include its
performance and scalability, persistence of event stream data, and its storage of
inconsistent schema items. In terms of DynamoDB’s performance and scalability, the
main highlight is that it gives the user the ability to auto-scale by automatically tracking
how close usage is to the upper bounds of the limits. The second advantage, the
persistence of event stream data, refers to DynamoDB streams allowing developers to
receive and update item-level data before and after changes in that data. This is
because the streams provide a time-ordered sequence of changes made to data within
the last 24 hours, subsequently allowing the developers to make a full-text search data
store such as Elasticsearch. The third advantage has the largest impact on our project,
the storage of inconsistent schema items. DynamoDB follows a NoSQL data model, so
it handles less structured data more efficiently than a relational data model. As a result,
it handles higher volumes of queries and subsequently high performance queries for
item storage in inconsistent schemas. This would improve with a larger scale for our
project since most consumers will have multiple “HotBoxes” along with NoSQL being a
better fit for our project since that is what most of the members have experience with.

3.4.2.3.4 Database Comparison
The following table shows the advantages and disadvantages of each of the databases
that are available for us to use for the project.

57

Table 26. Database Comparison Table

Database Name Advantages Disadvantages

MongoDB - Schema-less so any data
can be stored.
- High Speed, very easy to
access documents via
indexing.
- Is horizontally scalable, so it
is easy to distribute data to
multiple machines.

- Does not support joins,
must be coded in manually
which can affect
performance.
- Has high memory usage as
it stores key names for each
value pair, causing data
redundancy.
- Limited data size,
documents cannot exceed 16
MB.

Firebase - Concise documentation,
making it accessible to
everyone.
- Provides many services
beyond just database
services.
- Has an accessible UI and
provides ease of integration.

- Limited querying
capabilities, very difficult to
make complex queries.
- Cannot implement relations
between data items.
- Was designed with mobile
app development in mind, so
not in line with current scope
of project.

AWS DynamoDB - Provides access to control
rules without bottlenecks
other people’s workflow.
- Provides automatic data
management in the form of
backups.
- Easily links to AWS hosting
since they are part of the
same product.

- Indexing will be more
expensive since it requires
additional read and write
capacity to be provided.
- Can be difficult to analyze
data in the database since it
is a key-value database so
general data structures for
analytics may not work.

3.4.3 Software Selection Summary
This section of the document contains a discussion of what software we decided to
implement into our project. The section contains each selection for a specific software
portion of the project that needs to be implemented and why we decided to use it over
the various other options we had to choose from.

3.4.3.1 Website Stack
This section will contain all the development technologies we decided to implement for
our website demo for our project. All these technologies were explored and compared in
the Software Research section of the document. A stack contains four components that
will be discussed below. These components are the database, the front-end framework,
the back-end framework, and the web server. While there are commonly used stacks,

58

as aforementioned in the stacks portion of that research section, the following is a stack
of components we decided would best implement our application.

The following table displays our chosen stack with its components. The sections
following this table will explain why each component was chosen.

Table 27. Website Stack Table

Component Type Selected Technology

Database MongoDB

Front-end Framework React

Back-end Framework Express/NodeJS

Web Server Heroku

3.4.3.1.1 Database
The chosen database for our demo site is MongoDB, specifically MongoDB Atlas. The
reasons for selecting MongoDB Atlas as the database are as follows:

● Previous experience
● Industry standard for Database As A Service
● Single Object Structure is clear

The first reason for selecting MongoDB was the fact that all members of the group have
previous experience. We all created our own website application in the last year that
had similar software requirements. Obviously, the main challenge with this project on
the software side will be linking the embedded software to the database, so it is
beneficial for us to choose a database that we are already familiar with. Taking a new
database that we have never used would force us to learn how to use it, therefore the
learning curve could prove to be a problem.

The second reason for selecting MongoDB was that it is an industry standard for
database as a service. MongoDB Atlas was specifically designed for developers to not
worry about operational tasks such as patching, backups, and configuration. Many
companies use mongoDB, albeit higher tiers, as their database, so having a good
understanding of it by using it here would be beneficial.

The third reason for using MongoDB was because it had a clear single object structure.
The single object structure is beneficial because it makes it very easy to search the
collection for specific details and display it for whatever use is desired. However, this
can be both an advantage and a disadvantage, since this can result in a lack of
organization in the specific collection thereby causing potential confusion when
searching the database.

59

There are several reasons we did not opt to use our other options, which were Firebase
or AWS DynamoDB. One of the reasons for not using Firebase was that it is mainly
geared towards mobile application development. While it does provide more of a full
package in terms of authentication and hosting, it was specifically built for mobile
development which is not in line with the vision for the web app we are trying to create.
As for the reason to not use DynamoDB, while it does fit the vision for the project, the
entire project, which encompasses the web app, the hardware, and other parts, we are
very limited in terms of time. From the time we actually start working on the project, we
have a span of 2 and a half months to build the entire project, so it is much more
convenient to stick with what is known in the form of MongoDB.

For the reasons above, the entire group has decided to go with MongoDB for the
database for our project.

3.4.3.1.2 Front-end Framework
The chosen front-end framework for our demo site is the JavaScript library React. Our
group decided to to with React because:

● Previous experience
● Easy testing development
● Reactive application
● Industry standard

Our first and main reason for choosing React was our previous experience. We used
this JavaScript library in a previous class to create a website application. This
application was on a similar scale to the demo application we will have for this project.
Thus, the experience we have with React fits perfectly with what we will need to use it
for in this project.

Another strong benefit React had going for it was its easy testing development. React
allows for the developer to fully test the front-end portion of the application on their local
system. This saves time from needing to upload the code to the server every time it
needs to be tested, specifically what needs to be done using the components of the
LAMP stack.

React is used for its reactive applications. While this might not be very important with
the size our application will be, it was considered for the fact of where it will be used. In
the chance that our project ends up needing to be demoed on campus, the campus
WiFi could make it difficult to run the application, knowing how slow the WiFi can be
there. React will allow our application to run quickly and effectively, only needing the
initial loading of the site to work. This may save time and stress during the demo, and
that is valuable.

60

Another reason for choosing React is the fact it is an industry standard. React is the
leading front-end framework used for web development today, making it an important
skill to know and have for the resume of any software based designer or engineer.

Reasons we did not go with the other option, in this case, Angular, is due to its large
learning curve. Being our project needs both a web application and embedded code, it
is important to ensure we have time to complete both. Having to spend time learning a
framework with a large learning curve, while also an industry standard, is valuable time
we might require elsewhere.

For the reasons presented above, our group decided to use React for the front-end
framework of our website application stack.

3.4.3.1.3 Back-end Framework
The chosen backend framework for our demo site is NodeJS/Express. The backend
framework of our website will be the main driver that creates our models and routes for
each data structure. This involves the structure of how we store information on each
HotBox, such as the state of the box, the order number that must be sent to the box,
and a unique identifier that links the web app and the box to the database. Node JS is
an industry standard that offers a variety of packages that can satisfy any need.

The main reasons we opted to use NodeJS are as follows:

● Previous Experience
● Flexibility
● Industry Standard

The first reason we opted to use NodeJS is because all members of the group have
prior experience with it. As mentioned in previous sections, all members of the group
have used a MERN stack before, which uses NodeJS. The previous project was of a
similar scale, so translating that experience from then to now should be relatively
simple. The benefit of having that previous experience is that we do not have to spend
time learning how to set up the framework and looking for specific packages that we will
need. Since the second part of the course will be during the 12 week summer semester,
time is of the essence. So removing the learning curve period is extremely valuable to
us as a group.

The second reason we opted to use NodeJS as our back-end framework is that it is
extremely flexible. Using NodeJS as a backend provides all the benefits of full stack
JavaScript development. It has an extremely large number of free tools, provides better
speed and performance, and provides better efficiency and overall developer
productivity. The packages that NodeJS provides can fit almost all situations that any
developer would need, whether that is requiring connecting to MongoDB, using
Express, or even connecting to MySQL. Along with having a large range of packages,
there is a lot of documentation detailing how to to install and use these packages.
Having this documentation only serves to help and improve our workflow for this project.

61

The third reason we opted to use NodeJS as our back-end framework is that it is an
industry standard. Even though it was introduced back in 2009, it is still an extremely
popular tool that people opt to use over other options. NodeJS has made itself available
to many hosting service providers over the years, so it has remained relevant for all of
those years. It also offers the ability to cache data, meaning it stores data for some
future requests, making the application of NodeJS even faster. It is also an open source
technology, so it is constantly evolving in order to fit any need.

For the reasons stated above, our group has decided to go with NodeJS as our
back-end framework.

3.4.3.1.4 Web Server/Hosting
In terms of the web server/hosting, we are primarily looking for 3 things. The first being
github integration, the second being easy to set up, and the third being a free service.
For these reasons we have decided to go with Heroku Web Hosting. Heroku is a
platform as a service(PaaS) that enables developers to build, run, and operate
applications entirely in the cloud. It satisfies all the requirements that we specified and
more. Heroku has GitHub integration, it is easy to set up, has a free service, and we
have all used it before in a previous project.

Github integration will be extremely important since this project has multiple members,
meaning that the project files will be constantly updated, especially between the
frontend programming and the backend programming. Heroku uses Git, which is a
popular code version control system that is integrated with Github, to deploy code from
github to Heroku and back. Using Git will be very important to our project’s success
since it will keep everything organized and will allow other members to constantly see
what changes have been made, or even what specific requirements have been fulfilled
which prevents two people from working on the same task unnecessarily. The other side
of this entails actually uploading things to a github repository that is specifically made for
this project. Having a project github repo will be important to keep all of our code and
other resources collated to stay organized. This, combined with the easy deployment of
code to Heroku, makes it easy to select Heroku for hosting our web app.

A simple set up will also be vital to our project’s success, specifically since the rest of
the project is so complex. As we are on a tight schedule, since the entire project should
be completed by the end of July, it is important that we don’t get caught up on struggling
to set up a web server. Heroku is very easy to use and has a lot of documentation to
help anyone that is struggling to work with it. A brief overview of the process is
described as follows. First, we need to set up the Heroku CLI which is the command line
interface that helps manage, scale, and run applications. Second, we need to create a
heroku app from the command line, using the “heroku create” command to create an
app on Heroku. Finally, we deploy our code using “git push heroku main” which pushes
our code to the aforementioned heroku app. The entire process takes around 10
minutes to get a basic application set up, and any further updates to our application can

62

be added using Git and updating the heroku web app. This is an extremely short
process, which is exactly what we specified in our requirements for a web host/server.

Having a free service is also very important. Our web app is not very complicated and it
does not have any requirements that would result in the need for us going past the free
plan most services offer. Heroku’s free plan includes having a monthly run time of 550
hours, 512 megabytes of RAM, and many add ons that can be used for almost anything.
Heroku is primarily built for students, which is perfect since this Senior Design project is
for students. Additionally, all members of the group have used Heroku before in a
previous project, so we all have experience using it and know that it is free to use.

For the reasons specified above, we have decided to continue forward with Heroku for
our web hosting/server.

3.4.3.2 Embedded Software Language
There are a vast variety of languages to use for the embedded software for the project.
However, for our project, we believe the best option will be the Arduino IDE. This IDE,
using a C based language, is built specifically for the Arduino boards. Having decided to
use an Arduino board, using the IDE designed for them is a perfect fit.

The limitations of the IDE should be noted. At the time of writing the documentation, we
cannot know exactly what the code will need to contain and whether the limitations will
get in the way of producing the algorithms that will be needed. As such, there is a
chance that, should the Arduino IDE have too many limitations to achieve our goals, we
will swap to C or C++ as needed. This switch will be possible due to the fact that the
IDE uses C/C++ at a base level. Most code that works in the Arduino IDE can be put
into a C or C++ file and run without any adjustments. This will make the swap mostly
painless and greatly increase the options we have with the added libraries that the
Arduino IDE does not support. But since the IDE is designed specifically for the Arduino
boards and made simple to implement for their boards, this will be our first option in
order to save time in the development process.

63

4. Related Standards and Realistic Design
Constraints
This section of the document will contain all the standards and design constraints we
will have to deal with during the design and development of our project. The related
standards that apply to our project are things we must abide by to ensure our project
could be marketable and manufacturable as a design, even if we are not planning to do
that. The realistic design constraints will be problems and constraints caused by some
standards that we must address to ensure our product not only functions properly but is
also safe to use and not a hazard to people or the environment.

4.1 Software Standards
This section of the document will cover the form and interpretation of the code written
for this project. Javascript is a programming language that conforms to the ECMAScript
specification and uses curly-bracket syntax, dynamic typing, prototype-based
object-orientation, and first-class functions. ECMAScript is commonly used for
client-side scripting on the web, and is being increasingly used for writing code using
Node.js.

ECMAScript Javascript supports a structure of programming that is very similar to C, in
that they are imperative and structured. Both use keywords such as “let”, “const”, and
“var” for both block scoping and function scoping. It also has a very similar control-style,
with while, for, do/while, if/else, and switch statements. Functions can accept and return
any type, including “undefined” if no argument is provided. ECMAScript is also weakly
typed, which means that it has loose typing rules and can result in unpredictable
outputs. It can also perform implicit type conversion during runtime, but this has drawn
criticism from many developers since it can introduce many unexpected issues. It is also
dynamically typed, meaning that a type is associated with a value instead of an
expression. A language is dynamically typed if the type of a variable is checked while
the application is running.

In terms of actual coding standard, there are not very many specifications that a
developer must follow. Unless this code must be refactored to match a different set of
standards, we will be following a generic set of standards. For spacing, we will be
aiming to space out all code, so indentation with only tabs, trying to not leave
whitespaces at the end of every line, and using braces for if/else/for/while/try
statements. We will also not be leaning on the automatic semicolon insertion
functionality offered by Javascript since it can cause several issues in output, so we will
be making sure to include all statement terminators wherever necessary. By following all
of these standards, we hope to keep our code organized and readable for others.

64

4.2 Realistic Design Constraints
This section will contain design constraints that we will have to abide by or deal with in
the research and building process of our project. There are a wide variety of issues that
must be addressed or accounted for in making an acceptable and safe functioning
product. These constraints include economic, time, environmental, social, political,
ethical, health, safety, manufacturability, sustainability, and Covid 19 constraints. Each
of these constraints will be addressed in the following subsections.

4.2.1 Economic and Time constraints
The first of the constraints of this project are economic and time constraints. These
constraints come from the fact that, as students doing this project for a class course, we
have a limited amount of time in order to get everything done, from the documentation
to the product itself. Everything for this project comes out of our pockets so we also
must keep the product affordable.

Our time constraint is separated into two semesters. The first semester is a time
constraint on the documentation. This included the time available to research parts for
our product and create achievable requirement specifications. This also results in a
limited amount of time to produce the documentation for the entire project. Parts will
also need to be acquired in time for the building process, which should be done during
this time period.

The second semester is a time constraint on the actual building process of the product.
We have a limited amount of time to build a prototype, test the prototype, and fix and
adjust it as necessary. We also have the added time constraint of taking this semester
over summer, giving us less total time to get our product built as compared to if we took
it in fall. This time constraint will be one of the major constraints of our group and must
be accounted for and prioritized to ensure the project gets finished.
The economic constraint of our project is the monetary constraints we have. The project
must be affordable to develop and build. The overall product should also remain at an
affordable cost in order to fit the needs we are wanting our project to fit. Added to this
constraint is the fact our project is not sponsored. As such, all expenses of the project
come out of our pockets. This results in a significantly smaller budget to work with then
we might otherwise have had.

The main aspects of the project that will be affected by this constraint are part selection.
Some parts that could have been ideal for our project might result in having too large an
expense to go with, resulting in aspects of the project being more difficult, if not
impossible, to achieve. This could affect our stretch goals if specific parts are needed to
complete them and end up being too expensive. This project should not stress our
everyday livelihood due to expenses, so we must be sure to only get parts that are
necessary for the project and be careful not to have issues that could result in us
needing to replace parts later on.

65

The time and economic constraints will play a vital role in our success of the project.
Without proper time management, the time constraint would result in an incomplete
project. Without proper monetary management, the project could become too expensive
either for us to afford building or too expensive to achieve the goals we set out to
achieve with our project. These constraints can make or break our project, and thus, will
be important to keep track of throughout the project.

4.2.2 Environmental, Social, and Political constraints
Environmental, Social, and Political constraints come around if a product is going to be
manufactured and deployed. While we currently have no plans for this, this subsection
will cover the constraints would the above happen.

Environmental constraints involve the effect of the product and the environment on each
other. Our product resembles a low heat oven, as its use is to keep food warm, not to
cook the food. Although the product will not reach the same temps of an oven, it would
follow many of the environmental constraints of an oven. As such, the HotBox must not
cause damage to the environment. Potential issues that could occur would be sparks
from the electronics or wires and failure to hold heat inside the box, potentially resulting
in damage to the surrounding environment by fire. The product should not pollute the
surrounding air with any dangerous chemicals. The product should not produce
dangerous levels of radiation that could harm anything in its surrounding. This product
must be properly designed so that it will not cause any damage to its surrounding.

Social constraints involve the effect of the product on people. An individual must be able
to easily use the product without fear of damaging the product or getting hurt by the
product. This product deals with electronics and heat. An individual should be safe from
any risk of electrocution. The product should have ample safety in keeping the individual
safe from any potential burns from the produced heat of the product. Warnings of
misuse should be contained on the product or in the documentation manual so that the
individual using the product knows what to avoid for their safety. Proper use of the
product must never risk harm to the individual.

Political constraints involve the effect of the government on the product. If the product
were to be manufactured and deployed, the government could place constraints on the
product. These constraints could range from tariffs to standards specific to the product.
At the time of writing the documentation, there are no plans of manufacturing and
publicly deploying the product, so there are no current political constraints on this
product.

While some of these constraints may never apply to the product, it is important to keep
them in mind. Even if the product is to be kept private, environmental and social
constraints are still important to keep in mind in development. Regardless of where the
product is used, these constraints are important for the safety of anyone who could
encounter the product and the environment itself.

66

4.2.3 Ethical, Health, and Safety constraints
Ethical, Health, and Safety constraints exist from standards on manufacturing, product
design, and the public view on the production of products. These standards were
discussed above in the standards section.

Ethical constraints are constraints placed by the public view and some standards.
These constraints include how parts are procured and how the product is manufactured.
The product is currently only manufactured by us privately, resulting in no constraints on
the actual manufacture process. The parts needed for the product should be acquired
via ethical means. This includes ordering parts from accepted manufacturers, not from
manufacturers with questionable ethics. These constraints generally will not apply to our
product unless it were to be manufactured and deployed publicly.

Health and Safety constraints for the product are vast. Some previously mentioned
constraints stem from these constraints. The product must be built from safe materials.
The product should not produce any gas or other substance that could cause harm to
an individual using the product. The product must have safe and proper wiring to ensure
the electronics of the product will not cause sparks or electrocute an individual using the
product. The product should maintain the heat inside safely, not letting it leak into the
surrounding or transfer into the outside material that could risk burning an individual.
The documentation or manual of the product should make clear any specific safety
concerns specific individuals could encounter with the product. The documentation
should provide how to safely use the product to avoid harm. The documentation should
provide warnings of what is improper use of the product and warnings of potential injury
should the product not be used properly. The product must not harm an individual that
properly uses the product according to the documentation.

There are some specific constraints that need to be considered in our design to ensure
the project is safe to use. The above will be expanded into specific constraints that are
as follows:

4.2.3.1 Overheating
The function of our project is to keep food warm after being cooked. The heat that the
HotBox produces must only be enough to keep food warm. The project will also be
designed around heating food, not cooking food. Should the project produce heat
greater than the project was designed for, it could result in the overcooking or burning of
the food and damage to the internal portions of the project, potentially damaging the
functionality and/or safety of the product.

4.2.3.2 Fire
The HotBox will make use of electricity to power the electronics and heat to warm the
food. Both come with the risk of causing fires should they be improperly managed.
Electronics must be properly insulated and use of safe wires should be used to transfer
the electricity to the electronics. Improper consideration of this could result in sparks
that could risk producing fire. The heat that will be produced by the heating pad inside

67

the box must be accounted for and limited. If the heat inside the project is not insulated
from the outside or the electronics are not insulated from the heat, there is a risk fire
could be produced.

These constraints are important to ensure the safety of any individual that uses the
product. Should these constraints not be followed, individuals could be at risk using the
product. Should an individual be harmed by the product, the designers or manufacturers
will be held accountable. The product should be produced ethically to have favorable
views from the public. The product should be designed according to the standards
applicable to the product to ensure it is safe to use and does not risk the health of an
individual using the product.

4.2.4 Manufacturability and Sustainability constraints
Manufacturability and sustainability constraints will impact our project in the
development process. Manufacturability constraints are the manufacturability limitations.
These limitations restrict the parts and components that can be used in our project’s
design to parts and components that can be manufactured. For us, this will limit the
parts we can use to those that are actively manufactured and open to purchase. This
also restricts our electronics to be under manufacturing standards so they can be sent
and manufactured after the design process. Being we will be building our project
ourselves, we will be limited to what is available to us to use at the campus,
development tools we may already own, or tools we can afford to purchase for the
project.

Sustainability constraints are constraints that will affect how long our project can remain
functional and safe. Our project is expected to handle daily use. The project must
maintain a constant heat that could affect the surrounding materials, parts, and
electronics. These factors need to be considered in our design and development of the
project. Without it, the project could not function as expected or not function as
expected for an extended period of time. Improper consideration of these limitations
could also result in hazards our project should not have. Importantly, the design needs
to consider how the heat could affect the electronics of the project. Either the electronics
need to be designed to withstand the heat the parts need to endure or the design needs
to account for how to keep the heat away or minimized so the electronics will not
encounter this issue.

Manufacturability and sustainability requirements may either compliment each other or
oppose each other. Manufactured parts that improve sustainability are considered
positive correspondence. However, often the opposite is the case and manufacturing
and sustainability oppose each other. Ideally we will find manufacturing that improves
the sustainability of the project but this might be unavoidable.

4.2.5 Covid 19 constraints
In January, 2020, the US reported its first case of the disease Coronavirus Disease
2019, stemming from the virus SARS-CoV-2. More commonly known as Covid 19, this

68

disease would rapidly grow in cases and officially be declared a pandemic in March
2020. This would lead to many the closing of businesses, public spaces, and
importantly for us, college campuses. Covid 19 has brought about many challenges to
overcome for this project, resulting in constraints not usually present for the Senior
Design project. Covid 19 has resulted in unprecedented times for everyone. Every day
presents new challenges and constraints and each day is more difficult than it once
was. The following are specific constraints that Covid 19 has caused for us, constraints
that may not usually have been present or are worse than the constraints usually would
have been.

One constraint Covid 19 has brought about was the weakening of the economy. Over
this year time, the economy has greatly fallen and inflation has increased. This brings a
constraint of budget. Not only is the usual budget constraints aforementioned present,
Covid 19 has caused the price of many products to increase, effectively creating a
greater constraint for the budget, making our available budget effectively be less than it
could be. Covid 19 has also made it difficult to get or keep a job, resulting in the
aforementioned budget potentially being smaller than it would have been had this not
been going on.

Another constraint Covid 19 has caused, related to the economy, is shipping and
product availability. Due to social distancing standards and closing of businesses, the
production of products available has greatly decreased. While this situation has
improved over the year since it began, it is still a struggle going on and a constraint that
we must deal with. Many businesses have been overwhelmed during this time. While
availability has decreased, the need has not. This has resulted in shipping also being
overwhelmed. Many products are not always available, and when these products are,
shipping may take longer than usual due to the demand. This could be a minor or major
constraint, depending on whether our parts are affected by unavailability or just
potentially longer shipping times.

Potentially the greatest constraint we will encounter is social distancing. While Florida
has had far less aggressive constraints on this, it is still nonetheless a risk for us to
meet up, and thus is avoided. In order for us to meet, we have to be careful to have
proper social distance prior to meeting, affecting other aspects of our lives. This will
specifically make the building of the project more difficult. The vaccine may help with
this, but it is unsure when it will be available for everyone and thus, it is unknown how
much this could constrain our process of building and testing the project.

69

5. Project Hardware and Software Design Details
This section contains more specific details on how each portion of the project will be
designed or built. This section contains both the hardware designs and the software
designs.

5.1 Housing Design
In this section we will mainly be going over the housing design of the box and how it will
be constructed. The material of the housing of the box will be plywood due to the
inexpensiveness and the ease of manipulating and editing the wood to meet our project
needs. The wood we purchased also had excellent thermal retention so that would aid
with the insulation of the box. The dimensions of the box heavily rely on the dimensions
of the heating pad we decided to use. Our heating pad is a square base coming in at
310mm x 310mm (12.20 x 12.20 inches) and 3mm (.12 inches) thick. This is perfect to
fit the majority of different food sizes. The heating pad will sit on the bottom of the inside
of the box. The bottom of the heating pad features insulated cotton lined with aluminum
that helps with thermal conductivity inside the box. We want the height of the box to
have enough clearance for the customer to pick their food from the box, however not
too much clearance in order to heat adequately through the box. The shorter the height
of the box, the less time, energy and space needed to heat the overall interior of the
box, making it more efficient. The box is made up of three main compartments; the
interior heating space, the upper shelf for other electrical hardware components, and
the power system storage unit.

The interior of the box will be lined with a semi thick aluminum lining in order to improve
heat dissipation and heat retention inside the box. Inside the interior portion, the only
components present are the heating plate, used for the main heating of the box, and the
LM75A temperature sensor that is used to regulate the inside temperature of the interior
of the box. In order to keep the contents of the interior safe and secure, we installed a
door as well. The door features two regular stainless steel hinges that open the door
outward toward the customer for them to take their food. The solenoid lock is also on
the door with the latch present on the box itself in order to catch the lock and secure the
contents inside. The door is also insulated as well to prevent any heat from escaping.

Right above the interior of the box, we have the upper slide out shelf portion that holds
the rest of the main hardware components. The upper portion is vented in order to
prevent overheating and is properly sealed off to prevent heat dissipation from the
interior portion of the box. On the shelf, the main components present will be the 4
channel relay, PCB microcontroller, the LCD display, and the barcode scanner. For the
barcode scanner and the LCD display, we placed an acrylic transparent plexiglass on

70

the front of the upper portion in order for customers to be able to scan in QR
codes/barcodes and view their order information for validation on the display.
The back of the box features a small compartment that houses the overall wiring and
power system of the project. The AC-DC transformer and the necessary DC-DC
converters to operate the hardware are also present inside. This compartment is also
vented properly in order to prevent overheating which could damage our system. The
excess wiring that we had was also kept in this compartment for simplicity and ease.

5.2 Part Schematics
In this section we will cover all the different part and component schematics present on
the PCB and go over what went into the design of each individual part. Although the
overall schematic is not final and is changing, this will give us a main idea of what the
schematic will look like for each part.

5.2.1 Barcode Scanner
As we mentioned in the previous section about the barcode scanner, we will only be
using four of the necessary pins on the breakout board to fully operate the scanner. The
barcode scanner will be communicating with the microcontroller using UART. These
pins are listed below:

● VCC (5V)
● GND
● RXD (Input receive)
● TXD (Output transmit)

When implementing the scanner into our designs, we came across a problem that
needed to be solved. One was that the ATmega328 is developed to operate at a 5V
logic on the TX and RX pins used for communication while the RX and TX pins on the
scanner operate at a 3.3V logic level. Since we have the ESP32 WiFi module present,
which operates at a 3.3V logic level, we are able to use the barcode scanner without
having to level shift the connections. And we use the UART communication interface to
communicate between the wifi module and the scanner.

Below is the PCB schematic for the barcode scanner. Due to the inability of placing the
physical barcode scanner on the pcb, we decided to use a 4 pin header and have wires
connect to them for ease of use.

71

Figure 26. Barcode Scanner Schematic

5.2.2 4-Channel 5V Relay
For the 4-Channel 5V Relay, we will have to implement a header onto the pcb just like
we did for the barcode scanner. The 4-channel relay has 6 pins that will be connected to
the pcb, four of which are the input signal pins for communication to the relay, pins listed
below:

1. GND
2. IN1
3. IN2
4. IN3
5. IN4
6. VCC 5V

Below is the PCB schematic for the 4-channel Relay, as you can see there are two
unused input pins just in case for any added parts or features needed in the project. In
the schematic as well we have the electronic lock signal as well as the heating pad
signal connected to the relay.

Figure 27. 4-channel 5V Relay Schematic

72

5.2.3 Wireless Communication
For communication to other devices and servers, the ESP32 will be responsible. It’s
key for us to get this executed as best as possible because this is one of the key
features of the box. For the supply voltage we have a choice between 3.3V and 5V for
the ESP32. The barcode scanner is also wired together for communication through
UART as well. The pins on the ESP32 that we will be using are listed below:

1. SCL
2. SDA
3. GND
4. TXD0
5. RXD0
6. TXD2
7. RXD2
8. 5V

Below is the schematic for the ESP32 in our project

Figure 28. ESP32 Schematic

The ESP32 will be run together with the ATMega2560 and will communicate with each
other using either I2C or UART. Just like the Barcode scanner, the ESP32’s I/O pins
operate at a 3.3V logic level meaning we will have to use a logic level converter for this
to fully function. The figure below shows the schematic of the logic level conversion:

73

Figure 29. MOSFET Logic Level Conversion Schematic

5.2.5 Temperature Sensor
To regulate the temperatures inside the box in order to control the heating, we must
have a temperature sensor. The temperature sensor will be housed inside the heating
portion of the box and since the ATMega will not be housed inside with the temperature
sensor, we will require a header for it on the PCB design and wire it. The temperature
sensor will communicate to the ATMega via I2C and the pins used will be listed below:

● VCC
● GND
● SDA
● SCL

Below is the temperature sensor schematic, as well as a schematic for the pull up
resistors required for the I2C communication between the sensor and the ATMega to
fully function properly.

Figure 30. Temperature Sensor Schematic

74

Figure 31. Pull-Up Resistors

5.2.6 LCD Display
In order for customers to confirm their order is the correct order, an LCD display will be
present on the box where users can view their order information. The display will
communicate with the ATMega to pull different orders from the database through the
wi-fi module. The display will communicate to the ATMega via I2C similarly to the
temperature sensor meaning only 4 pins are required for use. Below lists the pins used
as well as the schematic for the display.

Figure 35. LCD Display Schematic

5.2.8 External Clock
The ATMega2560 clock can be sourced from a few options including External Clock,
Crystal Oscillator, Low-frequency Crystal Oscillator, or a Calibrated RC Oscillator. The
ATMega is equipped with its own internal RC oscillator at 8MHz; however a more
accurate clock can be connected through the ATMega clock pins, XTAL1 and XTAL2 as
long as the frequency of the oscillator is between 0.4 - 16 MHz. Below is a table of the
pins with their descriptions.

75

Table 28. XTAL pin Descriptions

Pin Description

XTAL1 Input pin to the inverting oscillator amplifier as
well as the input to the clock operating circuit.

XTAL2 Output pin from the inverting oscillator
amplifier.

We decided to implement a 16MHz Full Swing Crystal Oscillator into our project and the
recommended range for the capacitors needed are between 12-22pF. We decided to
use 20pF for both the capacitors. The schematic for the external clock configuration is
below.

Figure 33. External Clock Configuration Schematic

5.2.9 Reset Button
Present on the ATMega2560 is also an optional reset input pin. In order to activate the
pin, a low level for longer than the minimum pulse length (2.5μs) with or without the
clock signal operating. We decided to include a button onto our design for resetting the
PCB just in case. Below is the schematic for the configuration for the Reset Button.

76

Figure 34. Reset Button Schematic

5.2.9 PCB Microcontroller
The microcontroller is the main unit communicating to all the hardware components and
essentially the component controlling the project. Initially, when choosing our
microcontroller, we were looking for a controller that could not only support our
components, but other components in the future. We decided to go with the
Atmega2560 at first, which featured 4-UART, 1-I2C and 5-SPI peripherals for
communication. This was perfect for us because a lot of the components we decided on
using have open source libraries which are supported with the Atmega2560. Also it
featured 4-UART interfaces which bodes well for our system because UART is a key
communication method with various devices such as the wifi module and barcode
scanner. However, with all our necessary components installed and connected, we
realized we have too much space and decided to minimize the project by going with the
Atmega328 which has 28 pins instead of 54 pins on the Atmega2506. Atmega328 still
features the same communication protocols, so this did not cause any problems when
switching controllers.

77

Figure 35. ATMega328 Schematic

5.3 Final PCB Design Schematic
After going through each part's schematic, below showcases the final PCB Design Schematic
for our project.

Figure 36. Overall PCB Design Schematic

78

5.4 Software Design
This section of the document will contain all the relevant software designed needed to
make the HotBox function. All these designs are being written prior to actually making
and testing any of them. As such, the designs in this section are more of a plan of how
to create the code than a for sure design. Everything in this section is subject to change
during the actual development of the project, depending on how everything goes during
the development.

5.4.1 Demo Website
The HotBox revolved around the communication of a web application and the MCU in
order to communicate what the box needed to do. We decided this web application
would purely be for demo purposes. If this was to be manufactured, the web application
would need to be expanded to make it easier to implement with the restaurant or the
functions of the web application would need to be implemented to the restaurant’s
personal website for this communication.

For demo purposes, we will have multiple temperature options to show off the
differentiating heat dependent on the heat option chosen by the user. This option was
placed in the order form of the site, where a user would place an order. Once the form
was submitted, the application communicated the information to the MCU, giving the
box the order would be placed in and its order number so the user knew it was their
order. The box was also told when to lock or unlock by the site or barcode scanner,
ensuring the security the box was sought to have. The MCU will use software segments
built to do all these tasks. The application just needs to communicate what the MCU
needs done.

The demo site will need to have a user interface. At a minimum, the frontend interface
should be easy to follow and easy to use. Due to the shortened time period we have
over the summer semester, the application will be focused on having the minimum
requirements done. Stretch goals will be worked on when all the embedded software is
functioning. This frontend will be designed using React. React was used in a previous
class and is rather simple to use. React will easily allow for making the basic interface
but also can easily be used to expand into an advanced interface if time permits. Figma
was used to plan out the user interface for the web application, giving a visual to aim for
when coding up the frontend. (Below may or may not be this Figma design…)

The web app consisted of two pages, the status page and order page. The status page
displayed all the boxes in the system, their current status, and their current or previous
order number. This page also consisted of admin controls for the site, which could be
accessed below the status page by inputting the admin pin. This would unlock admin
control features, consisting of four buttons, an add, delete, lock, and close button, which
would add a box, delete a requested box, lock a requested box, and close the admin
modal respectively. Below are figures showing off these aspects of this page:

79

Figure 37. Status Page

Figure 38. Admin Modal Commands

The order page allows a user to place an order. Due to the demo purpose of the site,
the actual food item to choose is not an option and the box number requirement is only
an option for demo purposes. These would be adjusted if the HotBox was implemented,
as the site of that location would need to implement this site’s controls. Submitting the
order will give the user confirmation that the order was placed and send an email
containing the box number their order would be placed in and the order’s number.
Below are figures showing off the aspects of this page:

80

Figure 39. Order Page

Figure 40. Order Page Confirmation

5.4.1.1 Backend
This section will mainly detail the specifics of the backend portion of the demo website
and how it connects to the database. When designing the backend of the website, there
are a few things to consider. As we have already decided which technologies to use, all
of which are found in section 3.4.3, the first thing to consider is how we will connect our
backend to MongoDB. NodeJS has two packages that we will use, the MongoDB driver
and mongoose. MongoDB has an official NodeJS package that we will be using and
mongoose is a MongoDB object modeling tool that is designed to work in an
asynchronous environment. We will be using mongoose to connect to the existing
cluster that we will have on MongoDB.

5.4.1.1.1 Schema Structure
The next thing to consider is the structure of the schema that will be occupying the
database. The schema is defined as a uniform data structure that will store all the
information we need about each box. All of the schema will be stored in a folder called
“models” in order to have a comprehensive file structure. As we have not actually
started programming, the actual structure may change later on, but for now the basic
structure involves the following:

● An order number with type Number

81

● A BoxID of type String to uniquely identify each box
● A BoxNumber of type Number to identify each box on the frontend.
● A boolean value that defines if a HotBox is empty or not
● A Temperature value of type Number to send to the heating plate.

For the first point, it is important that we store the order number to identify which order is
corresponding to each HotBox. The order number will be displayed on the box, so we
need to at least store it. We will also display the order number on the web app so the
user can see which order they are working on, this is something that is already
implemented in most restaurant systems. The method with which we send the order
number will be detailed in a later section. Obviously the order number will be taken from
the online order, but the proprietary part of our product is the actual box, so we will not
need to develop an ordering portion for our web app.

The second point involves a unique hex code that links a HotBox to the web app. There
are many packages available that create randomized codes, such as bcrypt, so this is
relatively simple to implement. This is mainly for verification or for when we are trying to
use a GET request to retrieve information about a box. There are other alternatives for
connecting a box to the web app, such as using the order number, but until we actually
develop the application we will still use the hex code to link the box and web app.

The third point involves having a boolean value that shows whether or not a box is
empty or not. This is mainly for the user of the web application, that is the employee that
stocks the box with the food. Ideally, fast food joints would have multiple units of the
HotBox, so having a system that displays which boxes are empty or full would speed up
the overall process of filling the box. This is especially important since the HotBox really
shines when there are multiple orders or a large influx of customers.

The following paragraph describes what a schema would look like when we actually
program our backend. The first line would import mongoose, which is a NodeJS
package that acts as a driver for MongoDB to interact with a NodeJS project. The next
line defines the schema as a mongoose schema, so it is compatible with the format
MongoDB requires. More information on the format for MongoDB can be found in
section 3.4.2.2.1. The next section defines variables in the schema along with their
individual parameters, all of which are written in JSON format in order to properly parse
them to MongoDB. For example, a parameter that is strictly a whole number would have
a parameter of being of type “Number” and a parameter of “required” being true. The
first parameter just requires that the input must be a number while the second
parameter means that this variable is required when querying the database with a
POST or GET request. The final two lines simply export the schema and enable it to be
used in other files.

82

5.4.1.1.2 Routing
Since we have all of our schema being stored in a folder called “models”, we will also
store all of our routing files in a folder called “routes”. This is done to maintain a
comprehensive file structure in an effort to stay organized. The purpose of the routing
files is to set up all of the HTTP requests that any operation will require. The general
HTTP requests will be for creating, reading, updating, or deleting data from our
database. These are known as CRUD operations. Specifically, HTTP uses GET, POST,
PUT, PATCH, and DELETE requests for RESTful APIs. In the following paragraphs, we
will be detailing how we will use each request, what their responses are going to look
like, and setting up commands that will be used throughout the entire web application.

In order to match our software requirements, mentioned in section 2.4.2, we will most
likely have multiple route files to accommodate different parts of the web app. These
parts include the connections the box will have to the database and the connections the
web app will have to the database. The main requirements we will focus on are the
following:

● Sending the order number to the box along with a QR code to the customer
● Sending box information to the database
● Sending box information from the database to the web app

For the first requirement, we have to use a combination of a POST request and a GET
request to satisfy it. Firstly, we will need to create an order, which generates the order
number and a QR code programmatically. Since our product is specifically the heating
of the food, we will not need to store any information about food ordered, but we will
need to store the generated order number in our database. The QR code would be sent
to the customer through their email as well. After storing the order number, we would
send it to the web app and the HotBox, since both would have to display it. The web
app should show the order number that corresponds with each box so the employee
can track each order. The HotBox should also be able to display the order number on
the LCD so the delivery drivers can check which order they are picking up. The input will
be in JSON format, as that is what MongoDB will store our information as, and the
output will also equally be in JSON format for the web app connection, but the
connection to the HotBox may require a different type of output in order to properly
display the number on the LCD display. A positive response will respond with a code of
500, which will be easily seen with a testing environment such as Postman.

For the second requirement, we want to send information about the box to the
database. To this end, the box will send HTTP requests to the database, such as POST,
GET, and PATCH requests. We need to send whether or not the box is empty or not to
the database. This information will later be displayed on the web app, which will be
discussed in the next paragraph. This is the only main requirement that will involve
HTTP requests with the HotBox, the rest will be using embedded programming to
control the temperature of the HotBox, which will be covered in a separate section.

83

For the third requirement, we want to send information about the box from the database
to the web application. This will require more GET and POST requests in order to
retrieve the information that is necessary. The first bit of information we retrieve from the
database is the state of the HotBox. As mentioned in the previous paragraph, the state
of the box is whether or not the box has food in it. This must be sent to the web
application using a GET request, as in retrieving the information from the database. The
information will be sent in JSON format, the schema as mentioned in section 5.6.1.1.1 is
structured so this value is a boolean variable. The second bit of information that we
retrieve from the database would be the order number that will correspond to each box.
The main idea is that the web app would display which box corresponds to each order.
This is simply a GET request as well, with a 500 return code meaning an errorless
response.

The following describes what one of the routing files would look like when we actually
program the web app. The first line imports Express, which is a popular backend
framework, into the file so we can use it when creating GET or POST requests. The
next line imports the schema that will be relevant to this file, this is the same schema
displayed in the previous section. The third line is there so we can reference the
express API with the term “app”, so for example “app.get” or “app.post”. The next
section is an example of what an HTTP GET request will look like in Javascript. The first
parameter is how we will call this specific function, defined as ‘/FUNCTION_NAME’. So
the web app will generally have the URL as “mywebapp.com/goals” when accessing
this code. All functions will be asynchronous, meaning that all HTTP requests will be
processed separately and in different threads. All HTTP requests are split into two parts,
the request and the response. The request is the query that we send to the database,
so in our web app, we would request for a customer’s order number. The response
would be what is returned, so continuing the example, this would be the customer’s
order number that we retrieved from our database. So this shows how we query the
database and store it in a variable to be accessed in other files. Next is a try-catch block
where we either send what was requested or an error code if it fails. However, this is
only for a GET request. For a POST request, we are physically updating the database
with a supplied payload. We also must recreate the entry in the database with
“req.body” meaning the payload that was supplied. The following try-catch block is
almost the same as the GET request, except we also must save the updated schema
and then send the response. The final line simply exports the app which enables it to be
used elsewhere.

5.4.2 Embedded Implementation
This section will detail the embedded programming required for the HotBox. The main
requirements we have for the embedded implementation for the HotBox would be
modulating the temperature of the box and unlocking and locking the solenoid lock. To
do all of this, we decided the most efficient way to program this is by using the Arduino
IDE. This allowed us to use many libraries that helped us complete our goal. We
programmed both the AtMega3560 and the ESP32 using the Arduino IDE.

84

For the ESP32 we coded it to use HTTP requests. Using HTTP requests, we can
update the status of the box using POST requests. POST requests are used to send
data to a server to create or update a resource. By using POST requests, we can send
JSON objects to the temperature module and update it. This will have to be connected
to the web app, with the user updating the temperature via either a drop-down or a
manual text entry. We tested the POST requests by using Postman, by checking if the
actual temperature was updated once that portion of the box was built.

For the MCU, this controlled all of the main components of the box. This controlled the
temperature regulation of the heating pad. It also controlled whether the correct barcode
was scanned or not. If it was, the lock of the box would disengage and the box would be
unlocked

5.4.3 Barcode Scanner
The HotBox must have a form of security. This security is meant to ensure that only the
customer or the delivery driver of that order is allowed to access the contents of the box.
Otherwise the box will be locked via a lock which will only be unlocked by a proper
barcode given to said order.

The scanner that will be used to complete this task is the Waveshare 2D Barcode
Scanner. This scanner will communicate with our MCU in order to lock or unlock the
box.

The following is a flowchart showing the general flow of how the code for this will
function:

85

Figure 41: Barcode Scanner Flowchart

Here will be a more in depth explanation of the above flowchart. When a customer or
delivery driver comes to pick up their order, they will have the barcode scanner scan
their barcode. The scanner will send that data to the MCU, which will in turn decipher
the request. This request will be to send the data to the web application, so the MCU
will request the WiFi module to send the data over. If the WiFi module does not get the
request, an error will be displayed. Otherwise, this data will be sent over to the web
application. If the web application does not send a response after a certain period, an
error will be thrown. Otherwise, the web application will have used this data to
determine what box the order was placed in. The application will send this information
back to the WiFi module which will send the request to the MCU to unlock the box. The
MCU will unlock the box and end this request.

The Arduino library will be used to allow the scanner to get the information needed from
the customer’s barcode. This will in turn send a request to the MCU. The other
operations contained in this flowchart will have been done in its specific section. The

86

MCU should already be programmed to receive and send requests and the ability to
lock or unlock the box will be covered in that section.

5.4.5 File Structure
The file structure for our web app is very important to maintain, as it must be
standardized so other group members can look at our code and know where they need
to call certain functions. Generally, all MERN stacks have the same file structure. The
backend is always in the root directory while the frontend is placed in its own folder in
the root directory. We will also have a models folder which will store all the schemas,
which are the definitions of the data structures stored in our database. This folder will be
stored in the root directory along with the routes folder, which will contain all of the
routing files. The root directory will also contain a folder called “node_modules”, which is
installed by default when installing NodeJS. Any additional packages that are installed
will also be added into this folder. The remaining 3 files found here are the
“package.json”, the “package-lock.json”, and the “server.js”. The server.js file will
contain the connection to the MongoDB database while the package.json file is used to
give information to npm that allows it to identify the project and its required
dependencies. The package-lock.json file keeps track of the exact version of all the
packages installed. The “.env” file is a file that is usually highlighted in the gitignore file,
meaning that The picture below displays the root directory and its file structure, which
will likely be the same when actually programming the web app.

Figure 42: Sample Backend File Structure

Going into the frontend folder, it contains many of the same files as the root directory
such as the package.json and the package-lock.json. Since we are using React, there is
a command that automatically builds this folder, so the default folders that are created
are a “public” folder, a “src” folder, and a “node_modules” folder. The src folder contains
all of the CSS files and the Javascript files that control the UI of the web app. Any image
files that are displayed on the web app will also be stored in the public folder. The public
folder contains images, stylesheets, and fonts from Javascript. It also contains the
manifest.json file, a json file that is installed by default when adding React to a web app.

87

A web app manifest is included in a React app so anyone can install our React
application on their device. The sample file structure for the frontend folder is located in
the following figure.

Figure 43: Sample Frontend File Structure

88

6. Project Prototype Construction and Coding

This section will go into detail of the materials and software that will be used to build the
prototype. The definition of prototype is a first, typical or preliminary model of
something, especially a machine, from which other forms are developed or copied. The
reason this is important is because although it will be our first model of our product we
need to use this to perfect the design. When developing the prototype, we need to
observe any negatives with our designs to eventually perfect our final design. This
section will go into detail with the type of PCB we will be creating and the other facilities
and software that we will use in our project.

6.1 PCB Vendor and Assembly

In this section, we will discuss possible Printed Circuit Board Vendors and Assemblies.
There are many vendors that we can use to print our circuit board and we will discuss
the advantages and disadvantages of them here. Most of them are similarly priced with
a few exceptions.

6.1.1 JLCPCB (JIALICHUANG Printed Circuit Board)
The company JLCPCB is a great vendor for PCBs. They are a worldwide leading PCB
prototype enterprise and a high-tech manufacturer specializing in quick PCB prototype
and small-batch PCB production. This is our top vendor for our PCB.

With over 14-year continuous innovation and improvement based on customers' needs,
they have been growing fast, and becoming a leading global PCB manufacturer, who
provides the rapid production of high-reliability and cost-effective PCBs and creates the
best customer experience in the industry. They are the largest PCB prototype enterprise
in China and a high-tech manufacturer specializing in quick PCB prototype and
small-batch PCB production.

Some benefits for using JLCPCB is their advanced PCB technology allows them to
provide high precision boards suitable for industrial, military, aerospace, and medical
applications. They are continuously investing top-level base materials and advanced
equipment for fully automated production lines.

Since 2006, JLCPCB has continuously driven to become more efficient and reduce
costs. They promise to offer customers the most economic PCBs forever. JLCPCB
makes the cheapest but top quality PCBs possibly because of scale effect, extremely
high production efficiency and less manpower cost.

Their customer service is also exemplary. They have an easy-to-use online ordering
system, professional and efficient customer service, digital manufacturing technology,
full-automatic production lines, and stable logistics partners make every step to deliver
the PCBs faster.

89

With all these advantages, there are a few disadvantages. Although they advertise that
their delivery system is fast and reliable, their headquarters are located in China. This
means that the delivery will not be as fast as some vendors that are based in the US.
Also, China is known to sometimes have shortages of critical materials to build certain
products like the current shortages of GPUs. This could affect the time we get our PCB.
Another disadvantage is that the parts are cheap. They will not be as high quality as
some other vendors that charge a little bit extra.

Below is an example of one of the PCB from JLCPCB. As you can see, the quality of
the product does not look cheap although it might be cheap. This picture is from one
very satisfied user.

Figure 44: JLCPCB Example

Table 29. JLCPCB Features

Customers 800,000 +

Orders Daily 20,000 +

Total Factory Area 450,000㎡

Production Capacity/Month 620,000㎡

PCBs Produced/Year 6 Million +

Countries Covered 170 +

90

Employees 3000 +

Years Founded 14

On-time delivery 99.97%

Quality Complaint Rate 0.23%

Online Service 24/7

6.1.2 Jabil
Jabil Inc. is an American worldwide manufacturing services company. Located in the
Gateway area of St. Petersburg, Florida, it is one of the largest companies in the Tampa
Bay area. Jabil has 100 plants in 30 countries, and 260,000 employees worldwide.
Additionally, Jabil gives back to multiple nonprofits and charity causes here in the
Tampa Bay area and beyond.

This company provides electronic manufacturing services and solutions throughout the
world. The Company operates in two segments, which include Electronics
Manufacturing Services (EMS) and Diversified Manufacturing Services (DMS). Its EMS
segment is focused on leveraging information technology (IT), supply chain design and
engineering, technologies centered on core electronics, sharing of its manufacturing
infrastructure and the ability to serve a range of markets. Its DMS segment is focused
on providing engineering solutions and a focus on material sciences and technologies.

Jabil is involved in design engineering services. The company has industrial design
services that concentrate on designing the look and feel of plastic and metal enclosures
that house printed circuit board assemblies and systems. Mechanical design services of
Jabil include dimensional design and analysis of electronic and optical assemblies.
Computer-assisted design from Jabil includes printed circuit board assembly design
testing and verification and other consulting services.

Jabil has combined an unmatched breadth and depth of end-market experience,
technical and design capabilities, manufacturing know-how, supply chain insights and
global product management expertise to enable success for the world’s leading brands.

This PCB company has many advantages. The biggest advantage is the fact that the
headquarters is located in St. Petersburg, Florida. This means that the delivery time will
be extremely fast compared to other PCB companies. However, there are also some
disadvantages, such as the price. The price overall is not as good as JLCPCB for the
quality of the PCB..

91

6.1.3 JLCPCB vs. Jabil Comparison Table
Table 30. JLCPCB vs. Jabil Comparison

Features JLCPCB Jabil

Customer service 24/7 Standard 9-5

Amount of Employees 3000+ 260,000+

Countries Covered 170+ 30 +

Delivery Time Estimated 1-2+ weeks Estimated 3-4+ weeks

Quality Cheap but is lower in
quality

More expensive but higher
in quality

Price $29 $49

Shipping costs $2 $5

Location China St. Petersburg, FL

6.1.4 PCBWay
PCBWay is a manufacturer specializing in PCB prototyping, low-volume production and
PCB Assembly service all under one roof. They offer quick turn PCBs at a very
budgetary price. This is another PCB manufacturer that is located in China and not in
the US.

PCBWay advertises a high delivery rate. They claim that through the years, they are
proud to have been keeping an on-time delivery rate of 99%. This is very similar to
JLCPCB as well. They understand that apart from PCB quality, the other most important
factor is the shortest possible lead-time, which is crucial for us engineers’ works,
especially in the stage of prototyping.

92

PCBWay offers 10 quantities of 2 layer PCB for a price of $5 plus shipping. They offer a
feature called turn-around or quick turn time. They pride themselves as one of the
leading suppliers of PCB prototyping and low-volume production in the world. Their turn
time can be as short as 24 hours after your Gerber files are reviewed and approved by
our engineers, greatly saving you time in your work. There are other time schedules to
fit the budget. They offer 48-hours and 72-hours shipping too.

They claim that being quick in delivery never compromises on the quality. With their
stringent test procedures, we can be assured that we will be satisfied with our PCB for
your high-tech work. Apart from the quality, they believe that they can beat almost every
other fabricator on prices. Finally, they claim that If we find any other fabricators who
offer lower prices, they will lower their prices and do a price-match.

All of these advantages are good, however there are some disadvantages. After doing
more research, we have found some reviews of the company and their products were
not the best. There are a few reviews that indicate that the product is not how it is
advertised. Another disadvantage is that this company, just like JLCPCB is located in
China. Although they advertise fast shipping and delivery, it is not confirmed with these
companies.

Figure 45: PCBWay Example

6.1.5 JLCPCB vs. PCBWay Comparison Table
The following is a comparison table of the above PCB options we can choose from for
our project.

93

Table 31. JLCPCB vs. Jabil Comparison

Features JLCPCB PCBWay

Customer service 24/7 24/7

Amount of Employees 3000+ 500+

Countries Covered 170+ 170+

Delivery Time Estimated 1-2+ weeks Estimated 1-2+ weeks

Quality Cheap but is slightly lower
in quality

More expensive but slightly
higher in quality

Price $29 $40

Shipping costs $2 $5

Location China China

6.1.5 Conclusion and Final Decision
After researching multiple different PCB vendors and assemblers, we have come to a
decision between 2 companies: PCBWay and JLCPCB. In this section we will be
discussing the advantages and disadvantages of each and our final decision at the end.

The two companies have a lot of similarities. Both JCLPCB and PCBWay are located in
China. They both offer great customer service compared to other vendors. There are
only a few things they differ in like the costs of productions. One costs almost $50 while
the other costs around $30. The quality of each according to reviews are really similar
so to spend that much on the board will not be smart. However, PCBWay says that they
will match any competitors’ prices. This could be very useful when making a decision.

Finally, we believe that JLCPCB will be the best vendor to use for our PCB. There are
many reasons why we decided to go with this company. The customer service is great
and better according to some reviews. We are afraid because of previous owners, that
PCBWay will not be as advertised. We also have had many recommendations to use
JLCPCB from other students who have completed their Senior Projects and from UCF
faculty. This is why we are going to use JLCPCB as our vendor

94

6.2 Final Coding Plan
This subsection of the document will discuss the overall plan on developing all the
software as a whole for the project. This section will have three subsections for each of
the software designs: embedded software, frontend design, and backend design.

6.2.1 Frontend Plan
The overall plan for the frontend is to implement a user interface for the web application
that can send and receive all the requests it needs in order to allow the project as a
whole to function properly. This will be done by implementing the designs from a
previous section.

The first part of this plan will be designing the frontend UI prototype in Figma. This will
be done early in Senior Design II. This design will be presented to the group to allow
everyone to have a say in how its design should be. While the demo application will be
primarily focused on its functionality rather than how it looks, having a base to go off of
and a goal to make it look like will help drive the design. This design will need to contain
a UI that allows a user to select what food they wish to order, and thus, have heated till
pickup and the ability to actually pick up the food. The rest of the frontend design will be
implementing the API and communicating using the API and backend to do the above
tasks.

Once the Figma design has been developed and approved by the group, the actual
development process will begin. We will be using React in order to create the frontend
portion of the design. The basic UI design should not take long and should be done
relatively early to allow more time to be spent on the more difficult portions of
connecting the frontend to the API. This design portion will also contain developing the
functions the frontend will need in order to store information that will be passed to the
API.

After the basic UI is complete and the API endpoints have all been connected, the
resting process will begin. This testing process will be further explained in a following
section but in general, this period will contain all the testing needed to ensure the
software is functioning as desired. Software often needs a lot of debugging so we will
ideally get to this step as early as possible so we can have ample time to find and fix all
the bugs that could get in the way of a working product.

Finally, if the above was all done and there is still remaining time prior to the demo and
presentation of the product, we will be able to clean up the UI and make it look as nice
as possible. This will be where we really focus on matching the original Figma design
and adding the more difficult aspects that are unnecessary and in general a waste of
time should all the important aspects not already be completed. This final portion is a
stretch goal and is fully dependent on time constraints.

95

6.2.2 Backend Plan
The overall plan for writing code for the backend is to set up the connection to the
database and ensuring that all API endpoints are functional. The backend is the first
thing that must be done from a software standpoint in order for the project to progress.
Without it, the frontend will eventually be stunted in its progression because it is waiting
on the backend to have fully developed API endpoints. For essentially everything else in
the project to function, the backend must be developed first.

The first thing that needs to be done is to set up the file directory where we will be
storing our web app. Since we are using a MERN stack, we will be installing all the
components of that stack into the file directory. To that end, we will first need to install
npm and NodeJS to the file directory. NodeJS is the backend framework for our
application and npm is a package manager that will be dealing with all of the
installations of various packages that will be used in our project. We will also need to
install Express, since we are using that for the web application framework for NodeJS.
Express will be used for simplifying the writing of the server code when deploying our
application to the web. Since we are writing in Javascript, we will also need to have
some files prepared before we actually start programming our backend. These include a
package.json file and a server.js file. The package.json file will hold all of the metadata
relevant to our project, such as the dependencies and scripts of our project. The
server.js file will hold all of the connections to the database and the localhost port
opening when testing our application locally.

The second thing that needs to be done is to connect the database to the backend.
Since we are using MongoDB as our database, we need to research what is required to
connect it to a NodeJS application. From previous experience, we know that we will
need to use mongoose, an npm package, to connect our NodeJS app to the database.
So first we will need to install that using npm on the command line. The specific
command is “npm install mongoose”. Once this is done, we will need to create the
cluster that will hold our database on MongoDB so we can get the database URL. This
database URL will be placed in our server.js file. This is all that is needed to connect our
database to the backend that will be created.

Next, we will need to write schemas for data that will be placed in the database. All of
these schemas will be placed in the models folder located in our file directory. The
structure of the file directory is important to maintain, as exporting and importing in
Javascript is dependent on the file location. The first schema we will need to write is for
the order number of the box. As described in section 5.6.1.1.1, the order number is
typically taken from an ordering application, but the proprietary part of our product is the
actual box so we do not need to develop an ordering system. Schema for MongoDB is
written in the MongoDB Query Language, or MQL, which is very similar to JSON
formatting. An order number is a relatively simple data structure to program for. All that
is needed is to specify the type being of type “number” and the required value set to
“true”. The type being “number” means that the order number cannot be a decimal,
which is fine since order numbers are typically whole numbers. Along with that, the

96

required value being set to “true” means that the order number must be in the input,
otherwise the input payload won’t be put in the database.

We will also need to write a structure for a value to connect a HotBox to the web app.
This will be written as a string that will uniquely identify each box. Since all the boxes
will theoretically have different orders in each box, it will be important to uniquely identify
each box beyond the order number that will be displayed on the box. Using an ID also
adds another layer of security beyond the barcode scanner that will be implemented.
This code is randomized and stored in the database. As for its schema structure, it will
be stored as type “String” and its required value will be set to “true”. There’s no specific
type for hex values so type “String” will have to do.To add on to this, we will also have a
BoxNumber that will be used for display purposes and for some inputs on the frontend
to make it easier for a user to reference each box. This will be of type Number and will
automatically be set and incremented each time a box is added to the database.

The final schema structure that we must have is a boolean value that tells us if the box
is empty or not. Ideally, this process is automatic, where this value is constantly being
updated. This is very simple to program, with only two parameters to add. One for a
bool value with it’s default value set to “false” and the other being a required value being
set to “true”. All of these schemas should be exported so they can be used in other files.
This should be all the schemas that will be needed to be made.

The next step would be to set up all the routing files, all of which will be stored in the
routes folder. The routing files will contain all of the API endpoints that will send HTTP
requests to and from the web app. This includes updating the order number for each
box, updating if the box is empty or not, and sending all this information to the web app
as well. The HTTP requests that we will be mainly using for this are POST and GET
requests. POST requests update the database and GET requests fetch information from
whatever source is needed.

To update the order number, we will be using a POST request to update the information.
Realistically, we would also need to implement a GET request so we could retrieve the
order number from the order, but this will not be needed since we are not developing the
ordering portion of the entire process. Once we get the order number, we will need to
first store that in the database and then send that order number to box. The order
number needs to be displayed on the LCD so it needs to be sent from the database.

Updating the box information mainly entails sending the state of the box to the
database. This mainly uses a POST request that updates the boolean value of the
schema in the database. Once the barcode scanner gets a positive reading, meaning
that the person retrieving the food from the box opens it, we should update the state of
the box from true to false. Similarly, this process should also be reversible so the box’s
state can be updated from the web app as well, so when a worker puts in an order into
the box, they can also update its state. After writing all the API endpoints in the routing
files, we then need to export all of them properly so they can be used elsewhere.

97

Overall, after implementing all the features described above, this should cover
everything needed for the backend. Obviously, when actually programming the
backend, other issues may come and other needs may also come up so we’ll need to
be able to adjust and add any functionalities that may be required.

6.2.3 Embedded Software Plan
Arguably the most important software of the project is the embedded software. Without
it, the project has no hope of functioning in the slightest. The development of the
embedded software will be a major focus for the first half of Senior Design II. While
each portion by itself should not be overly complicated to design, having every bit of
software work together could slowly turn into a complex problem. Thus, ample time
should be allocated for this portion of the design.

The first thing to be done is research. While plenty of research was done for the
development of this document, coding specific research is hard to do until the actual
coding process begins, as we cannot know every little requirement we might need or
issue we will run into. We must first get the MCU software completed so that it is ready
to work with the other embedded software. We will likely also add the needed code to
communicate with a server at this point, as the communication between the MCU and
web application server could be one of the harder development processes but also a
vital part of the project as a whole.

Once we have the MCU setup and coded, we can begin adding all the small software
bits that will be required to run the project as a whole. These bits include software such
as the barcode scanner and reed switch. Ideally these small designs should not be too
complex, especially with the help of the Arduino libraries, and we can move onto the
next step as soon as possible.

This final step will be testing and debugging all the embedded software. It is beyond
important that the embedded software works properly and has no bugs. Unlike the
demo site, a bug in the embedded software could stop the entire project from
functioning. For instance, if our reed switch does not work, it is highly possible that any
requests made would be denied as most requests will require the door of the HotBox to
be a specific state. The way embedded software builds on top of each other creates
major reliances between them. We will need to create a well oiled machine of software
to create the product we have invisionsed. Once we get done with this step, the
majority, if not all, of the software implementation for the project will be done.

98

7. Project Prototype Testing Plan
The following sections will detail how we plan on testing both the hardware and software
side of our product. The hardware testing will cover the testing of the wifi connectivity for
a HotBox, the barcode scanner, the lock testing, temperature sensor, heating pad, and
the LCD display. Confirming that all of these are working are imperative to the success
of our project, so we need to make sure that our testing can account for as many issues
as possible. In terms of the software, the following sections will explain how we will test
all of the API endpoints in terms of the tools that will be used and what those results
could possibly mean. Ensuring that the software side of the project is important since
that will be one of the first things finished, so the hardware can safely test their own
modules with the full frontend and backend.

7.1 Hardware Testing
In this section, we will discuss the hardware testing of essential parts and components
used to create the HotBox. Each component will be tested individually in both wiring and
software to ensure proper functionality.

7.1.1 Wi-Fi Testing
To test the wi-fi connectivity of the HotBox, we will be testing the wi-fi module which is
the ESP32. We will first test the ability to transmit data between the microprocessor
(ATMega2560) and the ESP32 using UART. The next test will be to successfully
connect to the internet by connecting to a host. Once that test is complete, we will then
test the ability to use GET and POST commands and successfully read and update data
from a server.

For the first test, we will be trying to send a simple string from the ESP32 to the ATMega
and have the string printed out on the monitor of the ATMega console. Then we will
repeat the same thing except backwards, sending a string of data from the ATMega to
the ESP32 and have it viewed on that console as well. This will ensure that the UART
connectivity between the two is successful.

For the second test, we will have the ESP32 connect to the internet. There will be an
available 2.4 GHZ connection that will be made. Once the connection is made to the
internet, a PING will be made to a website and print the ping time. If the ping was
successful, it will print the ping time onto the ESP32 console. This will ensure that the
wi-fi module will be able to connect to the server to transmit and receive data between
the website and other devices as well.

Lastly, for the third test we will be testing the GET and POST commands. We will start
off by creating a POST command to write into an API a JSON string. Once done, we will
then create a string that outputs onto the console the successful POST command. Then
using the GET command, we will try and get the POST command we created and print

99

the same information that was POST onto the console from the API. This will ensure
that the POST and the GET commands are working properly for usage.

7.1.2 Barcode Scanner Testing
The barcode scanner is essential when it comes to customer validation and unlocking
the HotBox. How the scanner works is within the structure, a red beam of light is flashed
when the scanner is triggered, the module will then extract the alphanumeric digits from
the barcode, and compare it to the values present in the database. For Testing, we will
use serial communication to transmit and receive data from our scanner module to a
PC/database. Before scanning can be performed, we must set up the barcode scanner
to use serial TTL communications. By doing so, this will place the module in the correct
mode to receive and transmit sequential data. In order to set it to the correct mode, we
scan in the barcode located in the settings manual for the Waveshare 2D barcode.
Below is an image of the barcode.

Figure 46. TTL/RS232 mode barcode configuration

7.1.3 Lock Testing
The lock will be our main point of security for the HotBox, meaning testing will be very
crucial for this step. For this test, we test a 12VDC solenoid lock to ensure that it locks
and unlocks properly when 12VDV is applied to it. In the main application it will be
connected to a 5V relay. Other tests include making sure the lock is secure and in the
correct position when the box is closed and unbreachable once it is in the locked
position fastened into the custom fasteners. Below are some images showing the lock
with a ~12VDC applied to the unlock state of the lock as well as 0V when it is in the lock
state.

100

Figure 47. and 48. Lock in unlocked and locked state

7.1.4 Temperature Sensor Testing
Present in the HotBox, is two forms of temperature sensing, both work the same way.
Inside the box, and on the heating pad. However for simplicity purposes, we will only be
testing the thermistor which will be located on the heating pad. For testing, we decided
to sense the temperature of a simple room to make sure that it is able to read and pick
up accurate temperatures. We took a simple NTC thermistor and connected it to one of
the ATMega2560 input pins and had the temperatures output onto the Arduino console.
Below shows the testing wiring as well as the results. As you can see the thermistor
successfully reads the temperatures of the environment successfully.

101

Figure 49. Temperature Sensor Testing Wiring

Figure 50. Temperature Sensor Testing Results

7.1.5 Heating Pad Testing
The heating pad is another crucial part of the box that needs to be tested because it is
responsible for heating the food. The Heating Pad takes in 24VDC so we will use an
AC/DC transformer to power on the heating pad and make sure it starts heating. We will
then wire it with a relay and connect the relay to the ATMega where we will test if a

102

signal from the ATMega can power on and off the heating pad. We will test this in
conjunction with the temperature sensor in order to ensure it heats up to temperatures
that meet the HotBox’s requirements.

Figure 51. Heating Pad Testing Results

7.1.6 LCD Display Testing
The LCD Display will be used to show customers order information of the order present
inside the box. For testing, we will make sure that a string of text appears onto the LCD
display. Because we are using I2C, we saved a lot of time and space with the wiring
because I2C only requires 4 wires.

To begin testing,we first wire up the LCD Display and we first must figure out the I2C
address of the LCD display, to do this we write a simple code to figure out the address.
Below are the test results for finding the I2C address of the LCD Display.

Figure 52. I2C Address for LCD Display

103

Once the address is figured out we can then go ahead and output a sample string onto
the LCD display to see if it is functioning properly. Below shows the wiring and testing of
the LCD display.

Figure 53. LCD Display Wiring and Testing

7.3 Software Test Environment
In terms of testing the software, there are several options that we can use to test our
project. The first thing that we would test is the connection between our input, whether
that be from the restaurant applications that send orders to us or data that we receive
from the HotBox, to our database. Another thing that would need testing is the
connection between our database and the companion web application, mainly testing
the interface that displays the information. The following few sections will cover various
applications that are valuable in assisting us for creating a software testing environment.

7.3.1 Postman
Postman is an application mainly used for testing the backend of our application. It
allows for a developer to easily create, share, test, and document APIs. For our specific
purposes, we would use it to send sample web API requests to ensure that our backend
software is properly connected to our database. Postman allows users to send POST,

104

GET, PATCH, and DELETE requests and permits them to add an additional JSON
payload that specifies specific details that should be sent along with the requests.
Postman has also benefited from being able to be automated. It is very important to be
constantly able to check test cases every time an update is made to the backend, so
having an automated testing environment makes it very easy to catch bugs early on.

7.3.4 Testing Tools Comparison
Table 32. Testing Tools Comparison Table

Environment Benefits Limitations

Postman - Most complete API
development/testing
environment.
- Easy to create test suites that
contain multiple integration
tests.
- Easy to move test cases from
one system to the next.

- Does not provide
codeless testing.
- Lack of development
environment compatibility.
- Can only test 1 API
continuously.

Swaggerhub - Very beneficial for
documentation purposes.
- Can execute API class from
the documentation which helps
testing.
- Is able to deploy to different
host servers such as AWS.

- Mainly used for
documentation, thus has
limited testing capabilities.
- Is mostly written in YAML
and RAML.

Selenium - Integrated with Agile, Azure
DevOps, and continuous
delivery.
- Supports mobile testing.
- Supports 10 different
programming languages.

- Has no reporting
capabilities, so it is difficult
to understand what’s
wrong.
- Has a steep learning
curve.
- Requires third party tools
to reach full potential.

7.4 Software Specific Testing
This section of the paper will discuss the testing procedures that will be applied to the
software side of the project. This includes the testing of the embedded software, the
frontend functionality of the web application, and the backend functionality of the web
application. Each of these three topics will be discussed in their own subsections. These
procedures are only an initial plan prior to the actual development process and are
subject to change depending on what is needed or changed.

105

7.4.1 Frontend Testing
Frontend testing can be simple but also very difficult. A well known fact for software
developers is that something will work as intended to the developer but might not work
in cases the developer did not account for. As such, the frontend must be tested both for
its proper usage as well as improper usage. The site should not break if a user goes
around clicking parts of the site that were not intended to be used. However, since the
web application is meant to be a demo site and not a final product of an attached web
application, some latency will be allowed to focus on it demoing the product.

The frontend will go through a series of tests both during development and post
development. The site will be run in different browsers and in different browser sizes.
This will test the site for flexibility, ensuring it is not built to only be run on Chrome in full
screen mode for example. The decision of how flexible the site should be will be chosen
during development dependent on overall time, but the site at the least should not break
from the above testing. The site will likely be meant only for a computer and thus might
not work properly in a phone browser. Development of mobile browser compatibility will
be a stretch goal should time permit.

All functionality of the frontend will go through a series of tests. This will include
ensuring the frontend is properly sending and receiving data through the API endpoints,
checking that each function the frontend may contain correctly runs as per designed,
and ensuring the site as a whole looks the way we want it to.

As stated, the web application is being designed purely to test the functionality of the
product. We will focus on the site's functionality first and foremost and view any extra
additions to the site as stretch goals to clean up the site. The main functionalities of the
website are to display food options for the user to choose from, to communicate with the
server and hardware to run the correct settings and functions related to this choice, and
to allow communication with the user to display where their food is being held when
they are ready to claim it.

7.4.2 Backend Testing
This section will be used to explain the testing procedure for the backend. This includes
testing each API endpoint, ensuring that the database is updated when using each API
endpoint, and ensuring all of the schemas are correctly being recreated in the database.
Unless these things are all working, the entire product will not function at all. So
ensuring that these are working perfectly is of vital importance.

Beginning with the testing of each API endpoint, we used Postman to test each
endpoint. Postman allows developers to send JSON payloads through an endpoint by
connecting to the host url. It is fully customizable, so sending POST or GET requests
are both viable and can have any JSON payload attached. Granted, the payload must
be accurate according to the corresponding schema that is attached to that data
structure. Otherwise, we will simply receive an error code that could cause the

106

application to crash. It was our job to account for errors in the case that unexpected
requests are made. We will also need to effectively add comments so our frontend
developer can understand what each endpoint does.

Testing if the database is updated after using an endpoint is also important. If the
database is not being updated, that means something with either the database
connection or the actual endpoint is not functioning correctly. To do this, we can once
again use Postman to send JSON payloads through each endpoint and check what is
being updated in the database. It is important to ensure that the database is being
correctly updated since many GET requests will be made to the endpoint to retrieve
data. Should any of the information be wrong or corrupted, it can halt several other
processes such as displaying the data on the web app or displaying the data on one of
the HotBoxes. Halting other processes can result in the entire application crashing,
which is something that must be avoided, so it is vitally important to make sure the
database is being updated correctly. The picture below shows how we use Postman to
test each endpoint. The input is shown in the body, set in JSON format, the output is
shown at the bottom along with a server response code. The example shows the testing
for the “GetStatus” endpoint, which takes the ID of the box as a parameter from the URL
and returns the value of the “Empty” field located in the document of the box matching
that ID. The red square at the top represents the input, the red square in the bottom left
represents the output, and the final square shows the status code after running the
operation.

Figure 54. Postman Endpoint Testing

Ensuring that the schemas are being accurately created in the database is extremely
important. The purpose of a schema is to structure the data in the database and provide
a standard for other endpoints to retrieve or add data to the database. So, if the
structure is not what is expected, this can throw off many other functionalities of our web
app. To test this, we will be using Postman to send POST requests to our database.
Once we do that, we will compare what is posted in the database with our schema

107

structure that was saved in the models folder. If the schema structure matches what
was posted to the database, then we can assume that it is working correctly. If it does
not match, we will have to go back and check 2 things, the routing of the endpoint and
the export of the schema. Either one of those not functioning could cause several
crashes since anything trying to access that document in the database would either try
to get something that is not there or try to post something that does not exist.

After following these testing procedures, our backend should be functioning properly. As
development progresses, other problems may come up as they often do when
programming so it is our job to understand how those issues are coming about and
what we can do to prevent them.

7.4.3 Embedded Software Testing
This subsection will discuss the testing procedure used for each of the embedded
software designs discussed in a previous section. Each design will be of utter
importance to run correctly in order for the product to function as a whole. Should any of
the designs not work properly, there is a high chance the product could fail to do what it
was intended to do.

7.4.3.1 Temperature Modulation
This design of the embedded software will be used to adjust the temperature of the
product to the heat required to keep the selected food warm till pickup. First we ensured
that the modulation can be controlled by the requests made by the web application.
Once we have ensured the MCU is receiving and acknowledging these requests, we
can then choose to test specific temperatures. We can simply use a thermometer or an
embedded hardware to check and track the temperature of the box. We will be checking
if the temperature modulation correctly communicates with hardware to heat the box to
the requested temperature and ensure the product maintains a relatively close
temperature throughout the process.

7.4.3.2 Barcode Scanner
This design of the embedded software will be used to unlock or lock the box. The
barcode scanner should be able to scan a code and send the data to the MCU and
eventually to the web application through the ESP32 WiFi module. This can be tested in
a variety of ways. The main functionality we are checking for here is that the barcode
scanner is properly scanning the code and requesting the MCU to send the data to the
web application. We set up a console log or just manually checked the data that is sent
to check if it is equivalent to what was encoded into the scanned code.

7.4.3.3 ESP32 WiFi Module

The ESP module is programmed by the Arduino IDE. We needed to download libraries
to get it set up and be able to program with the Arduino IDE. Using the IDE, we set up

108

HTTP commands to send to the server and database. These requests return a JSON
containing all the information of an order. An example of a HTTP GET request was
tested below.

Figure X. HTTP GET test

The ESP32 code behaves similarly to normal Arduino code; there is an initializing phase
where the ESP32 connects to the local internet. After this, it goes into a loop until it
receives an order from the server. We get orders from the server by making HTTP
requests from the ESP32 to the hosted server. The server sends data in the form of
JSONs because it is more efficient to interpret. When the ESP32 receives this data, it
communicates to the MCU through the Serial Monitor like the example shown above.

109

8. User Manual
In this section, we will be explaining the operation of the HotBox. We will be breaking it
down into two parts, the consumer part as well as the administrator side. But before that
we will talk about the process before it gets to that stage. The HotBox is a stationary
heating box and should be placed in an area that has a wall outlet to power the box.
Once plugged in, the operation of the box will be available. Assuming the connection of
the box has been configured to the server and the network of the restaurant, all
operations of the box will be accessible to the admin of the restaurant. A list of
operations are listed below

● Lock/Unlock the Box
● View whether contents are present in the box
● Send order information to the box
● View temperatures of the box
● Set temperatures of the box.

Once an order is placed at a restaurant with a HotBox present, the order is then
prepared and the information is sent and placed in the box by the admin. Once the food
is placed inside the box, the admin locks the box to start the heating process and send
a notification to the customer. The information of the order is then displayed on the
outside of the box in addition with the box number on an LCD screen for consumers to
view. The box will be programmed to be on a low power ‘warm’ preset; that way once
food is placed inside the box, it will not take a long time to ramp the heat up inside the
box. Once food is placed inside the box, it will automatically be locked once the door
closes. After this happens, the box will be heated to whatever preset the customer
selected when they were placing their order. There are 3 temperature presets that the
customer can choose from (Warm - 110F, Warmer - 125F, Hot - 140F)

Once the order information is sent to the box and the box securely locks the food inside
the box, the box sends out a notification to the consumer alerting them that their food is
ready for pick up through email. Included in the email is a QRcode that is for unlocking
the box. The box will heat the food to keep it warm until the consumer comes in and
opens the box. In order to unlock the box, the consumer must scan his barcode
associated with his order, either on the restaurant app/web page or on his order receipt
(email). The box can also be opened by the admin in case of barcode malfunction.. All
orders that have been made will be present in the database so one of the states will be
available on the screen.

● Successful Scan: Order is ready and inside box #... the corresponding box will
unlock and the consumer will be able to open the box and take their food. Once
the order is taken from the box, the order information is sent to a different
database with completed orders.

110

● Unsuccessful Scan: Invalid Scan, Please see admin for more details. This
means that the order is not in the database for current orders for the box. This
could mean that the respective order has already been taken out of the box (old
order) or it’s a invalid receipt. The admin can give the consumer more information
regarding the issue if this prompt shows.

This concludes the user manual section for the HotBox.

111

9. Administrative Content
This section of the document is to cover the milestones and budget management of the
group. This section is meant to show the plan we came up with to go about the task of
creating the document containing all the research and design plans for the actual
project. The section shows how we planned to manage our time ahead of actually
writing the document. Also included in the section is our budget and finances for the
project. This section will include all the parts that will be purchased for the project and
the expected prices for each of those parts.

9.1 Milestone Discussion
The following table is the plan we created during the Divide and Conquer portion of the
document. This contains the estimated start and end dates we planned to go about
completing each of the tasks. These start and end dates were adjusted based on how
they were actually done. The portion following the table will discuss the changes made
and why they ended up how they are. The table includes both Senior Design I and
Senior Design II tasks that needed to be completed.

Table 33. Initial Project Milestones

Task Start Date End Date Status

Senior Design I

Form Group 1/10 1/14 Completed

Senior Design Bootcamp 1/21 1/21 Completed

Project Discussion and Decision 1/21 1/24 Completed

Initial Project Document -
Divide and Conquer

1/24 1/29 Completed

Final Divide and Conquer Document 1/31 2/12 Completed

Emergency Group Meeting 3/16 3/16 Completed

60 Page Documentation Draft 3/16 4/2 Completed

60 Page Draft Meeting 4/5 4/7 Completed

100 Page Documentation Report 4/5 4/16 Completed

Final Revisions and Proof Readings 4/18 4/27 Completed

Final Document - 4/27 Completed

Acquire Project Parts 4/28 - Completed

112

Senior Design II

Assemble Prototype 5/2 7/26 Completed

CDR Presentation - 6/18 Completed

Midterm Demo - 7/7 Completed

8-Page Committee Paper - 7/16 Completed

Form Committee Panel - 7/20 Completed

Final Presentation and Demo - 7/26 Completed

Committee Meeting - 7/27 Completed

Website and Deliverables - 8/3 Completed

While having everything going according to plan would be great, this did not happen for
us. We found the semester to be full of obligations and responsibilities, from other
classes to work, affecting the progress of our meeting to plan and produce the project
documentation.

The largest change was removing an optional task containing a time to have completed
40 pages of the document. This task was originally added to keep us on track. The gap
between the final Divide and Conquer and 60 page draft was well over a month, making
it hard to know whether we were on track. This task, which was to be completed by the
second week of March, was to measure this. However, we found that, due to
aforementioned responsibilities, this was not possible and the start date for working
towards the 60 page draft was pushed back drastically.

Instead of the above task, we decided to have a meeting when this task was due.
During this meeting, we created a table of contents based on the table of contents
example given in the documentation guidelines. This was created to be a guide for us,
to know what needs to be written and around how many pages should be written for
each section. We also discussed each individual's role in completing this document.
This included each member was responsible for around 30 pages of the document. The
group contained two pairs, the hardware pair and software pair. We discussed that each
pair was responsible for writing the sections related to their roles, being the hardware
sections and software sections.

The milestones that ended up in the final milestone table were important tasks to be
tracked. These tasks were based on due dates for portions of the documents, meetings
the Professor had with us, and other tasks we viewed as important to track in order to
complete the document on time.

113

Our group was formed on January 13th, finalized into a group in the class on the 14th.
Our group contained members who we already knew from previous classes, adding
chemistry and cooperation to those already present. Our group was composed of four
computer engineers, however, two were focused on the software side, one was focused
on the hardware side, and one was flexible, allowing the group to have a good split of
hardware and software focused individuals.

Our group attended the Senior Design bootcamp on January 21st. This meeting
focused on giving us a foundation to build off of. This meeting was used to create the
first iteration of the milestone table.

The next couple Milestones were done following the bootcamp. During this time, we
discussed ideas for the project and decided on one, which was used to write up the first
Divide and Conquer documentation. We had trouble coming up with ideas, leaving few
options to choose from. The main two ideas we had to decide between was the HotBox
project and a secure messenger device. Some members realized that the secure
messenger device would be too small to have the required microboard leaving us with
the HotBox project as our only real option.

We had a meeting with Dr. Richie about the Divide and Conquer document and had the
project approved. We followed the meeting up by creating a House of Quality table for
the final Divide and Conquer document.

The next milestone was the 60 page document draft document. As aforementioned, we
had major delays on starting this task, reducing the effective time the group had to
complete the task. This resulted in an emergency meeting on March 16th. In this
meeting, we had an important discussion on everything. First and foremost, we once
again went over the expectations of each member, specifically for the software
members. Up till this point, it had not been very clear what software would be needed
for the project. This was clarified to be a website application to demo the project and
code that would adjust what temperature the HotBox should maintain for specific food
items. The hardware members also had some discussions on what they should
research. We also came up with a goal of writing a page a day. At this point, if every
member wrote at least a page a day, we would make the deadline. This would also help
with making the entire document seem less daunting and more manageable. We also
decided we would have a meeting every week from then on, in order to keep up
communication and to keep everyone accountable for what they needed to have done.
Without this meeting, we may never have managed, so it was a very important part of
our process.

Up till the 60 page submission deadline, we continued to have one to two meetings a
week to discuss anything that came up. In general, we discussed specifics for the
hardware and software, in order to know what to write about for that week. During this
period, some members excelled in the page per day goal while some fell short. By the
time the submission came around, although we did not reach 60 pages of original
content based on the requirements given, we technically had 61 pages for the

114

submission. With this submission came a meeting with Dr. Richie to discuss how
everything was going.
This meeting was successful. Dr. Richie stated that what we had was good so far. He
had a few comments for us, specifically needing introductory paragraphs for sections.
He also gave us some much needed pointers on how to go about writing the second
half of the document, as multiple of us were finding it difficult to find stuff to write about
at this point. We got clarification on a few questions we had for him, including the best
way to get in contact with him if needed and exactly what needs to be written.

We held a team meeting following the Dr. Richie one to go over everything discussed
and set a plan for the 100 page submission. This meeting included a new page per day
goal for each member, based on how much they had written so far and how much they
had to write from here on out to reach the end goal of 30 pages per person. We also
went over the remaining requirements that had to be written. Dr. Riche had mentioned
to make sure we did not hit 120 pages and stop before the requirements were meant.
To ensure we avoid this, a list of everything remaining was made that we could cross off
as we continued. We also started to finalize the parts we would need so we could start
purchasing them earlier rather than later.

The 100 page submission was due over Spring Break. Unfortunately for how the
semester worked out, Spring Break ended up being a work week for a lot of us. Due to
the workload that was required to be completed during the week, we found little time
available to commit to the paper. This resulted in us falling short of the 100 pages by the
time it was due, putting us well behind schedule.

We held a meeting the Tuesday after Spring Break to discuss what needs to be done in
order to complete the paper in the remaining week. We made the decision to try and
finish all the writing by Sunday night. This would give us all of Monday to ensure we had
all the requirements but importantly give us plenty of time to format the paper for the
final submission. Being we were significantly behind schedule, this was going to require
every member all in to get the paper done. Any effort less than the most we could do
would leave us behind the 120 page mark by the due date. Procrastination had taken its
toll over the project and now was the time to get on it.

The final week plan seemed to be falling apart. The time remaining for writing had
passed and barely anything more had been done. This led to a member making an
important reminder and request to get to work. This was not something to wait last
minute, yet this is exactly what we were doing and it needed to be addressed now. If the
last push was ignored, we would have no chance at making the deadline and all the
effort spent would not result in what we would want.

The final days before the due date were a grind to say the least. Many members worked
all day every day for those final days to catch up on the writing that needed to be done.
Slowly but surely though, the pages were made and we ended up just around the page
count that was desired. The final day and a half was reserved for formatting the paper
and ensuring all the requirements were meant. We did not want to find ourselves having

115

reached the page goal we wanted but did not have some of the major requirements
needed for the document as a whole. After all this was done, the paper was finally
submitted and one step of the project was complete.

Senior Design II began with us being delayed a couple weeks. This was due to a
member being out of the country and overall needing some time off after the process of
developing the SD1 Document. We got started once this member returned to the
country.

The first deliverable of the class was the CDR Presentation, to show off what our project
would be, how we planned to accomplish it, and our current progress of completing it.
Being that we were still very early in the development process, this presentation was
mostly a progress report of what we had done so far. Around this time, we concluded
we were about 50% completed, although this percentage included the Senior Design I
deliverables, we were somewhat behind overall but had plenty of time left to go.

We continued developing the project up till the next deliverable, which was the Midterm
Demo. By this time, we were only weeks away from the project needing to be done.
The main focus of this demo was to show off what we had completed so far, what we
had worked on but not yet completed, and what we were behind on. This led to a
meeting where we were advised on anything that might need to be cut. In this meeting,
we were confident we could finish everything we had sought to accomplish with the time
we had left and continued to work on developing the project.

The final couple weeks prior to the Committee meetings consisted of hard work and
stress. The team worked overtime, especially the hardware side, on getting the box
developed. At this time, we had configured almost everything for the project but nothing
on the physical product had been put together. The software team was focused on
adding the final touches to their side and keeping constant communication with the
hardware team to ensure the site and endpoints had everything needed for the box to
function. The main stress at this time was finding members for our Committee. There
was an influx of about 50% more groups over the Summer semester than normal, and
with no increase in the professors available, we struggled greatly to find professors for
our Committee. We eventually finalized our Committee well over the original due date
and only days before the actual meeting.

The final two days consisted of the team working day and night on finishing the project.
These days consisted of many problems that needed to be fixed, hindering us from
finalizing the project. Fortunately, what felt like neverending issues popping up stopped
occurring the final day of development and we were able to complete the development
and record our demo. The final day before the meeting was spent recording our
presentation and finalizing our 8-page Committee paper. We had issues with the
internet and some mistakes were made in the video editing of the presentation, leading
us to finish later than we wanted. We were able to get it done within the hour before it
needed to be due and received our meeting details within that hour.

116

Finally came the meeting. This meeting was very successful, as we answered all the
questions our Committee had and answered enough questions with our presentation,
demo, and 8-page paper that the meeting only needed twenty of the thirty minutes
allocated. With this, the team agreed some rest was in order and decided to take the
rest of the day to relax.

We met up the next day to discuss the final deliverables for the class, which was
creating a website that contained all the deliverables for Senior Design and updating our
old document with any changes from the development process in Senior Design II. We
spent the final week completing this, making a deadline to have everything done a
couple days before the final due date so that everything could be added to the site and
give us time for any issues that might end up occurring with the website.

With this, we had completed everything needed for Senior Design and could finally
enjoy a nice break from all the hard work we had done over the seven or so months.

9.2 Budget and Finance Discussion
This section of the document will discuss our estimated budget and finances for the
project. This project is a personal project and has no sponsors to assist with the
expenses. As such, all costs for the project will be coming out of our pockets and will
heavily restrict the budget we will have to work with. Early on in the semester we all
decided we wanted to try and keep the project to a maximum cost of $400 or $100 per
group member. It is possible we will need to spend more and are prepared to so if
necessary, but it is our goal to not spend more than that. Along with personal spending,
our budget is meant to keep the project affordable. While we do not have initial plans to
push the project further than being just a project, we still want to try and develop it
around the idea that it could be manufactured, and as such, should be affordable to
produce for those that would make use of having it.

The following is a table containing the cost of the components needed to create the
HotBox. This the pricing of creating a single box:

Table 34. Budget and Finance

Parts Quantity Regular Cost

Lock 2 $18.89

Barcode Scanner 1 $46.12

Relay 1 $7.99

LCD Display 2 $10.43

Wifi Module 3 $24.97

117

Transformer 2 $34.88

MEGA 2560 1 $33.76

Heating Bed 1 $20.99

24v to 5 converter 1 $10.09

Temperature sensor 1 $9.57

24 to 12 converter 1 $10.63

Uart converter 1 $13.33

Plexiglass 13”x5” $9.99

Foil Insulation 1 $12.19

Pack of Pin Headers 1 $3.99

Infrared thermometer 1 $18.89

Logic Level Shifter 1 $15.68

Heavy Duty Plug 1 $12.99

TTL UART to usb 1 $7.99

Transformer 2 $35.99

DC power jack 1 $4.50

Pack of breadboard
jumper wires

1 $13.34

400 Grit sandpaper 1 $4.99

40 Grit sandpaper 1 $5.19

Fiberwood ¼ log $8.02

Paint, paint tape,
screws, caulk, wood,
glue, handle

1 of each $69.83

JCLPCB 2 $63.15

Total: $542.39

118

9.3 Project Tools
This section contains all the tools that were used or will be used in the design and
development process of the project.

Discord
Discord is a free voice, video, and text application. Discord offers many options to make
it easy to collaborate between ourselves. It offers private message groups for smaller
groups and channels that can support larger groups or be used to better organize
information in the channel. Discord groups and channels also have voice channels or
the ability to call in order to communicate in voice should typing not cover the material
that is to be discussed. Discord has been our main source for communication. Early on,
we made a group for early discussions on finding members for our group and talking
about ideas we had for the project. While we used the group for far longer than we
should have, we eventually made a channel for our group. This group contained three
text channels, general, hardware, and software. General was used for general
discussion about the project. Hardware was focused on the hardware aspects of the
project, mainly used by the hardware pair of our group. Software was focused on the
software aspects of our project, mainly used by the software pair of our group. These
text channels helped keep information separate and organized. Our channel also had a
few voice channels that we could use in order to speak to one another for more effective
communication, importantly for our weekly meetings. Discord also has the ability to pin
messages. This was useful for keeping track of important messages, valuable
information, links to our document, etc. Due to the difficulties of meeting up in person
during our Senior Design, Discord helped keep strong communication among the
members.

GroupMe
GroupMe is a communication application that allows the creation of groups based on a
specific topic or classes. GroupMe is commonly used by students for our classes to talk
amongst students in the class. GroupMe was used early on to help find members for
our group. The application was also used to speak to other students in the class that
were not part of our group. This ability was useful for asking questions about other
portions of the class, including finding lecture links and keeping track of due dates that
we might have forgotten about.

Google Drive
Google Drive is a file storage and synchronization service developed by Google. Google
Drive was used for nearly everything related to writing this document. Google Drive was
desirable for this document because it allows for easy sharing among members and
allows us to easily all work on something at the same time without worry of conflicting
with one another. Google Drive contains many tools that were used for the document.

Our project contained multiple subfolders in our Senior Design drive. These folders
made it easy to organize different aspects from each other. For example, we had a

119

folder to hold all our flowcharts to make them easy to find and adjust as needed without
them getting mixed with everything else. Google Drive also made it easy to keep older
versions and backups of our work. We made viewable only docs for each of our
separate submissions, from our initial Divide and Conquer to each of the page
milestone submissions. We also kept at actively updated backup in the chance
something happened that could result in a catastrophic loss of work.

Google Docs was primarily used for writing the 120 page document. The ability for all of
us to easily be able to look over and work on the same document at the same time was
beyond helpful. It made collaboration very easy and quickly allowed us to review each
other’s work and provide feedback during the writing process. While Google Docs does
have its issues, specifically with page breaks that sometimes do not make sense, the
benefits heavily outweigh any inconveniences it has.

Google Drawings was used to create many of the figures found in the document.
Google Drawings provided all the tools we could find wanting for developing these
figures. Like all Google Drive tools, Google Drawings made it easy to collaborate and
work on the same figure at once, saving time and effort and overall increasing
productivity.

Google Sheets were also used for some of our figures and tables. We specifically used
Google Sheets to create our House of Qualities table. The House of Qualities table was
created during a meeting with all of us collaborating on it at the same time. Google
Sheets made it very simple to both design the House of Qualities and simultaneously
work on it.

Google Drive and the tools it contains helped immensely with the process of creating
this document, saving us time and effort with the ability to easily share and collaborate
on the document and its aspects.

Figma
Figma is a vector graphics editor commonly used for designing frontend web app
interfaces. Figma makes it easy to share ideas and collaborate on designs. Figma also
contains a vast variety of tools to create any design one could imagine. Figma will be
used to create a user interface for the web application. This design will be built through
collaboration, making sure everyone on the team likes the design of the application. The
visual of the design will make coding up the frontend of the application much easier. It
will provide a direct reference when attempting to replicate the design over in code.

Visual Studio Code
Visual Studio Code is a freeware source-code editor developed by Microsoft. VSCode is
a very powerful editor with many tools available to download and use. VSCode is able
to edit many languages. Along with having an option to live share code with teammates,
it may prove very useful for collaboration in the software development process. VSCode
could potentially be used for all the software development we will do, allowing us to

120

streamline what we use to develop. At the very least it will likely be the main editor used
for the development of the web application.

GitHub
GitHub is an Internet hosting provider for software development and version control.
GitHub is used by millions of software developers for their code and many open-source
software can be found and used from GitHub, including some of the libraries we will be
using in our project. Not only will GitHub be used to access some of these open-source
software available to us, we will also use GitHub ourselves for its version control aspect.
A vital portion of software development is ensuring changes we make do not break
everything. Version control and its ability to create branches for new code will allow us
to test changes before pulling them into the main code, and should something break,
version control can be used to restore to a point before that happened, although ideally
we will avoid this potential issue at all costs. Needless to say, GitHub will be a vital part
of our software development for the project, storing the code and allowing us to easily
manage how to pull changes.

Git
As mentioned previously, we will be using GitHub to manage and collate all of the code
that will be written for the web app. To that end, we will be using Git to control this from
the command line. Git is a free and open source distributed version control system
designed to work in tandem with GitHub, hence the naming. Git is specifically for
version control, it makes it easier for developers working on a project to track what
changes have been made to any code so people do not work on the same thing. Git can
also be used to deploy Node.js apps to Heroku, which will be its primary function in this
project. Beyond that, Git will be mainly used for version control and so everyone always
will have the latest version of the project on their local machine. Git is popularly used in
the industry, so using it here is a great experience for the future.

9.4 Project Roles
This section covers each member of the group, what they studied and their roles in the
project as a whole. This section will also contain a table with a simplified version of the
information on each member and their contribution to the team.

Ahmed Kazzoun
Ahmed Kazzoun is a computer engineering student. He was part of the hardware team
for the project. Ahmed is the most flexible member of the team, having strong
backgrounds in both the hardware and software sides of electrical engineering. He used
this experience to be the main communicator between the two teams, being able to
comprehend what both sides are doing and effectively merge the two. Along with
communication, his main focus will be working in the hardware team to build the
functioning physical prototype for the project and work.

121

Austin Tillotson
Austin Tillotson is a computer engineering student. He was part of the software team for
the project. Austin maintained that his strongest skills lied in coding, putting him on the
software team. He will focus on creating the embedded software with the software team
and focus on the frontend side of the demo web application. Austin also took the role of
organizing meetings and creating agendas for the meeting. He wanted to ensure each
weekly meeting was focused and discussed what needed to be done that week or in the
near future. His focus during the development of the paper was to hold each member
accountable for their part in the writing process, keeping track of each member’s
contribution. He also was the final judge on the formatting of the paper.

Chaitanya Vemuri
Chaitanya Vemuri is a computer engineering student. He was part of the software team
for the project. Chaitanya was the strongest member for software development on the
team, making him a prime candidate to work on the software team. His role for the
project will be to develop the embedded software with the software team. Specifically he
will be focused on creating the communication between the hardware and software via
signals from the web application. He will also focus on creating the backend for the web
application. He showed interest in working on the frontend of the application as well and
will help with the frontend should time permit.

Haafiz Shafau
Haafiz Shafau is a computer engineering student. He was part of the hardware team for
the project. Haafiz was by far the most experienced member when it came to hardware
so he led the charge for the hardware team. Haafiz’s role in the project is to design and
develop the physical prototype for the project and do the hardware testing for the
prototype with the help of the hardware team. He also designed the electronic diagrams
and schematics needed for the project design and documentation. Haafiz was also the
project manager of the group. He was the one who came up with the project idea and
took the lead in developing what the project would require from both the hardware and
software.

The following is a table containing the above information of each member in a more
simplified environment:

122

Table 35. Project Roles Table

Ahmed Kazzoun - Computer Engineer
- Hardware team
- Communicator between teams
- Physical prototype developer

Austin Tillotson - Computer Engineer
- Software team
- Meeting organizer
- Embedded software developer
- Frontend developer

Chaianya Vemuri - Computer Engineer
- Software team
- Embedded software developer
- Backend developer

Haafiz Shafau - Computer Engineer
- Hardware team
- Physical prototype developer
- Hardware designer and tester

123

9.5 References
Adafruit. “RGB backlight positive LCD 16x2 + extras - black on RGB” Derived:

https://www.adafruit.com/product/398

Albatross. History of C++. cplusplus: http://www.cplusplus.com/info/history/

Angular. Introduction to Angular Concepts. Angular:
https://angular.io/guide/architecture#:~:text=Angular%20is%20a%20platform%20
and,you%20import%20into%20your%20apps

Arduino. ATmega640/1280/1281/2560/2561 Datasheet. Retrieved from Microchip:
http://ww1.microchip.com/downloads/en/DeviceDoc/ATmega640-1280-1281-256
0-2561-Datasheet-DS40002211A.pdf

AWS DynamoDB. Amazon DynamoDB FAQs. AWS:
https://aws.amazon.com/dynamodb/

BrittLiv. “Programmable Temperature Controller + Hot Plate.” Derived:
https://www.instructables.com/Programmable-Temperature-Controller-Hot-Plate/

Campbell, Scott. “Basics of the I2C Communication Protocol.” Derived:
https://www.circuitbasics.com/basics-of-the-i2c-communication-protocol/

Campbell, Scott. “Basics of the SPI Communication Protocol.” Derived:
https://www.circuitbasics.com/basics-of-the-spi-communication-protocol

Campbell, Scott. “Basics of UART Communication.” Derived:
https://www.circuitbasics.com/basics-uart-communication/

Centers for Disease Control and Prevention. “Personal and Social Activities.” Derived:
https://www.cdc.gov/coronavirus/2019-ncov/daily-life-coping/personal-social-activ
ities.html

Circuit Basics, “Basics of the SPI Communication Protocol,” Available:
https://www.circuitbasics.com/basics-of-the-spi-communication-protocol

CostWay. “End Loading Insulated Food Pan Carrier Hot and Cold” Derived:
End Loading Insulated Food Pan Carrier Hot and Cold

Creativity. “Heated Bed 24V Black Parts Heatbed Hot HotBed 3D Printers Part Heat
235mmx235mm Aluminum Plate 3m 3DprinterAccessories.” Derived:
http://www.creativity3dprinter.com/HeatedBed_24VHeatbed_235mmx235mmHea
tbed

Dataflair. Pros and Cons of MongoDB. Dataflair-Training:
https://data-flair.training/blogs/advantages-of-mongodb/

124

https://www.adafruit.com/product/398
http://www.cplusplus.com/info/history/
https://angular.io/guide/architecture#:~:text=Angular%20is%20a%20platform%20and,you%20import%20into%20your%20apps
https://angular.io/guide/architecture#:~:text=Angular%20is%20a%20platform%20and,you%20import%20into%20your%20apps
http://ww1.microchip.com/downloads/en/DeviceDoc/ATmega640-1280-1281-2560-2561-Datasheet-DS40002211A.pdf%5C
http://ww1.microchip.com/downloads/en/DeviceDoc/ATmega640-1280-1281-2560-2561-Datasheet-DS40002211A.pdf%5C
https://aws.amazon.com/dynamodb/
https://www.instructables.com/Programmable-Temperature-Controller-Hot-Plate/
https://www.circuitbasics.com/basics-of-the-i2c-communication-protocol/
https://www.circuitbasics.com/basics-of-the-spi-communication-protocol
https://www.circuitbasics.com/basics-uart-communication/
https://www.cdc.gov/coronavirus/2019-ncov/daily-life-coping/personal-social-activities.html
https://www.cdc.gov/coronavirus/2019-ncov/daily-life-coping/personal-social-activities.html
https://www.circuitbasics.com/basics-of-the-spi-communication-protocol
https://www.costway.com/end-loading-insulated-food-pan-carrier-hot-and-cold.html?fee=4&fep=12451&utm_source=google&utm_medium=cpc&utm_campaign=product&gclid=Cj0KCQjwrsGCBhD1ARIsALILBYqNnT2XVsvMBoho_ys-xNYpoYSnJalgsTw1kqJRMbihLzAsuTVtnZAaAs-gEALw_wcB&__cf_chl_captcha_tk__=5f6fc4cb58b4692fb78a3cc8c5eba0b1c7744b5f-1616474024-0-AUB8V9KmTVbiQjyf5QFRGb7f4693rhfsqNv5GUH9Dxqsdyp8vrg48gE5yQXxGlj0s9kuqQo51kF2E0omNwmAZYsplf3BbPJZ0dsjfq9qKQrTVDj0DkzQnqXr6vqwnKWk7ajjzifWrI5VkRhRiSBRC0sSgYPKiIyx2n2kliZG-dLU05hkpJk3SIgU-sECy7gaafBAlM5uKVNOI6ekQ-FzkpBYfke-W4GHX-Z7Dni2sqLqGBGob1kt2i20EKzyJD9tL06_w4JuShPH9F5MT77l_FGzF5bm38dkIbQvRrzBg9hsmyfJx7FuBgm_C1hbFv4jUQwi0W6IJMedtY1jC9h4cGmTnD7Oje1MVo2ZjGRngVUAykAEMro_GT6U1ujFxorFhtgfEW26MYU5iacrUtNF6NX_-88neBSuhbp6DTuLvu7w9lXCvyhSQ05TeYAi6pfYRNRKAQv6KxNBh-l7uGOrvtdKUt6mIOi7IJg5cGqN3Hx48M66ulFbdxurdr9-Jjsb8QAUzBiknkEhEW6mIxh6nv5_ht6uHvKGKxtiPqULfHj4Fw23I_QgE7onwSU0ivQa-HRqsQkc8i8QNlFwYT-mO4W8QJ3WSlSDzxAYw0P8lj5jwRQ79l1NU7AAvMxo4jmKHJL8NBx-uRG2jqH0nbDUwt2hGtHYTYYp6vPHRqQ1JItMu8nqiu9c4sziUVtDhYxkPQ7eOpJzi9qC9-mxVE204-N4cuhWq5Mp_7NzKb3Nes9Yiz1fVDGmyOzHvkcUvhu_YVJDqqNcSbQjEACzdCkoGNT2Y38Nd2870JK5SMS4QbCeYzvg6ITRSVlhaPHECeTCwktjcvW55zxKFXiHuJUHFCxbTafWIx9MBuFGLyqM227Mwo5IM88Avprir5ybB6rzH5f2c3WLSTTtfGaZC6WkVvI
http://www.creativity3dprinter.com/HeatedBed_24VHeatbed_235mmx235mmHeatbed
http://www.creativity3dprinter.com/HeatedBed_24VHeatbed_235mmx235mmHeatbed
https://data-flair.training/blogs/advantages-of-mongodb/

Epec, LLC. “Polyimide / Kapton® Flexible Heaters.” Derived:
https://www.epectec.com/flexible-heaters/polyimide-kapton-heaters.html

Epec, LLC. “Silicone Rubber Heaters.” Derived:
https://www.epectec.com/flexible-heaters/silicone-rubber-heaters.html

Espressif Systems. ESP32 Datasheet. Retrieved from Expressif:
https://www.espressif.com/sites/default/files/documentation/0a-esp8266ex_datas
heet_en.pdf

Firebase. Support and Upgrade Guide. Firebase:
https://firebase.google.com/support/guides

Heroku. Heroku Dev Center. Heroku: https://devcenter.heroku.com

IBM Cloud Education (2019, May 9). Lamp Stack Explained. IBM:
https://www.ibm.com/cloud/learn/lamp-stack-explained

“Interface an I2C LCD with Arduino.” Derived:
https://lastminuteengineers.com/i2c-lcd-arduino-tutorial/

JLCPCB. “Why JLCPCB?” Derived:
https://jlcpcb.com/aboutUs

MongoDB. Firebase vs MongoDB. MongoDB:
https://www.mongodb.com/firebase-vs-mongodb#:~:text=MongoDB%20is%20a%20mor

e%20robust,purely%20a%20cloud%20database%20service

MongoDB. Mern stack. MongoDB: https://www.mongodb.com/mern-stack

Postman. Postman Learning Center. Postman: https://learning.postman.com

Python Institute. About Python. Python Institute:
https://pythoninstitute.org/what-is-python/

Resendes, Stephanie. “26 Online Ordering Statistics Every Restaurateur Should Know
in 2020.” Derived:
https://upserve.com/restaurant-insider/online-ordering-statistics/

Sanruskmv, ProjectHub “GM65 barcode scanner” Derived:
https://create.arduino.cc/projecthub/sanruskmv/wireless-product-tracking-arduino
-mkr-barcode-scanner-3708d9

Section (2020, Jan 23). A Brief History of C Programming. Section:
https://www.section.io/engineering-education/history-of-c-programming-language/

125

https://www.epectec.com/flexible-heaters/polyimide-kapton-heaters.html
https://www.epectec.com/flexible-heaters/silicone-rubber-heaters.html
https://www.espressif.com/sites/default/files/documentation/0a-esp8266ex_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/0a-esp8266ex_datasheet_en.pdf
https://firebase.google.com/support/guides
https://devcenter.heroku.com
https://www.ibm.com/cloud/learn/lamp-stack-explained
https://lastminuteengineers.com/i2c-lcd-arduino-tutorial/
https://jlcpcb.com/aboutUs
https://www.mongodb.com/firebase-vs-mongodb#:~:text=MongoDB%20is%20a%20more%20robust,purely%20a%20cloud%20database%20service
https://www.mongodb.com/firebase-vs-mongodb#:~:text=MongoDB%20is%20a%20more%20robust,purely%20a%20cloud%20database%20service
https://www.mongodb.com/mern-stack
https://learning.postman.com
https://pythoninstitute.org/what-is-python/
https://upserve.com/restaurant-insider/online-ordering-statistics/
https://create.arduino.cc/projecthub/sanruskmv/wireless-product-tracking-arduino-mkr-barcode-scanner-3708d9
https://create.arduino.cc/projecthub/sanruskmv/wireless-product-tracking-arduino-mkr-barcode-scanner-3708d9
https://www.section.io/engineering-education/history-of-c-programming-language/

Selenium Testing Tool. About Selenium. Selenium: https://www.selenium.dev

Sparkfun. 2D Barcode Scanner Module -DE2120. Retrieved from sparkfun:
https://www.sparkfun.com/products/16410

SwaggerHub. Why Swagger. SwaggerHub: https://swagger.io

Texas Instruments. “LM75A Digital Temperature Sensor and Thermal Watchdog With
Two-Wire Interface” Derived: https://www.ti.com/lit/ds/symlink/lm75a.pdf

Tom. “3D printing guides: Everything about heated beds!” Derived:
https://toms3d.org/2014/12/21/3d-printing-guides-everything-about-heated-beds/

Vogt, Mary. “ What Are Flexible Heaters?” Derived:
https://www.loomia.com/blog/flexible-heaters

Wasp. “Barcode Scanners: How Do They Work?” Derived:
https://www.waspbarcode.com/buzz/how-barcode-scanners-work
Relay Circuit Diagram

Waveshare. “Barcode Scanner Module User Manual. Derived:
https://www.waveshare.com/w/upload/d/dd/Barcode_Scanner_Module_Setting_
Manual_EN.pdf

WebstaurantStore. “Cambro EPP260SW110 Cam GoBox“ Derived:
https://www.webstaurantstore.com/cambro-epp280sw110-cam-gobox-black-half-
size-top-loader-insulated-food-pan-carrier-15-3-8-x-13-x-12-3-8/214EPP280BLK.
html

Wilhelm, Alex. “How COVID-19 accelerated DoorDash’s business.” Derived:
https://techcrunch.com/2020/11/13/how-covid-19-accelerated-doordashs-busines
s/

126

https://www.selenium.dev
https://www.sparkfun.com/products/16410
https://swagger.io
https://www.ti.com/lit/ds/symlink/lm75a.pdf
https://toms3d.org/2014/12/21/3d-printing-guides-everything-about-heated-beds/
https://www.loomia.com/blog/flexible-heaters
https://www.waspbarcode.com/buzz/how-barcode-scanners-work
http://wiki.sunfounder.cc/index.php?title=4_Channel_5V_Relay_Module#Principle
https://www.waveshare.com/w/upload/d/dd/Barcode_Scanner_Module_Setting_Manual_EN.pdf
https://www.waveshare.com/w/upload/d/dd/Barcode_Scanner_Module_Setting_Manual_EN.pdf
https://www.webstaurantstore.com/cambro-epp280sw110-cam-gobox-black-half-size-top-loader-insulated-food-pan-carrier-15-3-8-x-13-x-12-3-8/214EPP280BLK.html
https://www.webstaurantstore.com/cambro-epp280sw110-cam-gobox-black-half-size-top-loader-insulated-food-pan-carrier-15-3-8-x-13-x-12-3-8/214EPP280BLK.html
https://www.webstaurantstore.com/cambro-epp280sw110-cam-gobox-black-half-size-top-loader-insulated-food-pan-carrier-15-3-8-x-13-x-12-3-8/214EPP280BLK.html
https://techcrunch.com/2020/11/13/how-covid-19-accelerated-doordashs-business/
https://techcrunch.com/2020/11/13/how-covid-19-accelerated-doordashs-business/

9.6 Permission Requests

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

